Hadamard's method of descent

Hadamard's method of descent

In mathematics, the method of descent is the term coined by the French mathematician Jacques Hadamard as a method for solving a partial differential equation in several real or complex variables, by regarding it as the specialisation of an equation in more variables, constant in the extra parameters. This method has been used to solve the wave equation, the heat equation and other versions of the Cauchy initial value problem.

As Hadamard (1923) wrote:

We thus have a first example of what I shall call a 'method of descent'. Creating a phrase for an idea which is merely childish and has been used since the first steps of the theory is, I must confess, rather ambitious; but we shall come across it rather frequently, so that it will be convenient to have a word to denote it. It consists in noticing that he who can do more can do less: if we can integrate equations with m variables, we can do the same for equations with (m – 1) variables.

References



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Descent — Not to be confused with Dissent. Descent may refer to: In genealogy and inheritance: Common descent, concept in evolutionary biology Kinship and descent, one of the major concepts of cultural anthropology Pedigree chart or family tree Ancestry… …   Wikipedia

  • List of complex analysis topics — Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematics that investigates functions of complex numbers. It is useful in many branches of mathematics, including number theory and applied …   Wikipedia

  • number theory — Math. the study of integers and their relation to one another. Also called theory of numbers. [1910 15] * * * Branch of mathematics concerned with properties of and relations among integers. It is a popular subject among amateur mathematicians… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”