Mandelbulb

Mandelbulb
A ray-traced image of the 3D Mandelbulb
for the iteration zz8 + c.

The Mandelbulb is a three-dimensional analogue of the Mandelbrot set, constructed by Daniel White and Paul Nylander using spherical coordinates.[1]

A canonical 3-dimensional Mandelbrot set does not exist, since there is no 3-dimensional analogue of the 2-dimensional space of complex numbers. It is possible to construct Mandelbrot sets in 4 dimensions using quaternions. However, this set does not exhibit detail in all dimensions like the 2D Mandelbrot set.

White and Nylander's formula for the "nth power" of the 3D vector \langle x, y, z\rangle is

\langle x, y, z\rangle^n = r^n\langle\sin(n\theta)\cos(n\phi),\sin(n\theta)\sin(n\phi),\cos(n\theta)\rangle

where

\begin{align}r&=\sqrt{x^2+y^2+z^2} \\
 \phi&=\arctan(y/x)=\arg (x+yi) \\
 {\rm and\ } \theta&=\arctan(\sqrt{x^2+y^2}/z)=\arccos(z/r).\end{align}

They use the iteration z\mapsto z^n+c where z^n is defined as above and a+b is a vector addition.[2] For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" controlled by the parameter n. Many of their graphic renderings use n = 8.

Contents

Quadratic formula

Other forumulae come from identities which parametrise the sum of squares to give a power of the sum of squares such as:

(x2y2z2)2 + (2xz)2 + (2xy)2 = (x2 + y2 + z2)2

which we can think of as a way to square a triplet of numbers so that the modulus is squared. So this gives, for example:


x\rightarrow  x^2-y^2-z^2+x_0

y\rightarrow  2 x z+y_0

z\rightarrow  2 x y +z_0

or various other permutations. This 'quadratic' formula can be applied several times to get many power-2 formula.

Cubic formula

Cubic fractal

Other forumulae come from identities which parametrise the sum of squares to give a power of the sum of squares such as:

(x3 − 3xy2 − 3xz2)2 + (y3 − 3yx2 + yz2)2 + (z3 − 3zx2 + zy2)2 = (x2 + y2 + z2)3

which we can think of as a way to cube a triplet of numbers so that the modulus is cubed. So this gives:


x\rightarrow  x^3 - 3 x (y^2 + z^2) + x_0

or other permutations.


y\rightarrow 
-y^3 + 3 y x^2 - y z^2  + y_0

z\rightarrow  
z^3 - 3 z x^2 + z y^2 + z_0

for example. Which reduces to the complex fractal w\rightarrow w^3+w_0 when z=0 and w\rightarrow \overline{w}^3+w_0 when y=0.

There are several ways to combine two such `cubic` transforms to get a power-9 transform which has slightly more structure.

Quintic formula

Quintic Mandelbulb
Quintic Mandelbulb with C=2

Another way to create Mandelbulbs with cubic symmetry is by taking the complex iteration formula z\rightarrow z^{4m+1} + z_0 for some integer m and adding terms to make it symmetrical in 3 dimensions but keeping the cross-sections to be the same 2 dimensional fractal. (The 4 comes from the fact that i4 = 1.) For example, take the case of z\rightarrow z^5 + z_0. In two dimensions where z = x + iy this is:


x\rightarrow x^5-10 x^3 y^2 + 5 x y^4 + x_0

y\rightarrow y^5-10 y^3 x^2 + 5 y x^4 + y_0

This can be then extended to three dimensions to give:


x\rightarrow 
x^5 - 10 x^3 (y^2 + A y z + z^2) + 5 x (y^4 + B y^3 z + C y^2 z^2 + B y z^3 + z^4) + D x^2 y z (y+z) + x_0

y\rightarrow 
y^5 - 10 y^3 (z^2 + A x z + x^2) + 5 y (z^4  + B z^3 x +  C z^2 x^2  + B z x^3 + x^4) + D y^2 z x (z+x)+ y_0

z\rightarrow  
z^5 - 10 z^3 (x^2 + A x y + y^2) + 5 z (x^4  + B x^3 y + C x^2 y^2  + B x y^3 + y^4) + D z^2 x y (x+y) +z_0

for arbitrary constants A,B,C and D which give different Mandelbulbs (usually set to 0). The case z \rightarrow z^9 gives a Mandelbulb most similar to the first example where n=9. An more pleasing result for the fifth power is got basing it on the formula: z\rightarrow -z^5 + z_0.

Fractal based on z->-z^5

Power Nine formula

Fractal with z^9 Mandelbrot cross sections

This fractal has cross-sections of the power 9 Mandelbrot fractal. It has 32 small bulbs sprouting from the main sphere. It is defined by, for example:


x\rightarrow 
x^9-36 x^7 (y^2+z^2)+126 x^5 (y^2+z^2)^2-84 x^3 (y^2+z^2)^3+9 x (y^2+z^2)^4 + x_0

y\rightarrow 
y^9-36 y^7 (z^2+x^2)+126 y^5 (z^2+x^2)^2-84 y^3 (z^2+x^2)^3+9 y (z^2+x^2)^4 + y_0

z\rightarrow 
z^9-36 z^7 (x^2+y^2)+126 z^5 (x^2+y^2)^2-84 z^3 (x^2+y^2)^3+9 z (x^2+y^2)^4 + z_0

These formula can be written in a shorter way:


x\rightarrow 
\frac{1}{2}(x+i\sqrt{y^2+z^2})^9+\frac{1}{2}(x-i\sqrt{y^2+z^2})^9+x_0

and equivalently for the other coordinates.

Power nine fractal detail

Spherical Formula

A perfect spherical formula can be defined as a formula:


(x,y,z)\rightarrow( f(x,y,z)+x_0, g(x,y,z) + y_0, h(x,y,z) + z_0 )

where

(x2 + y2 + z2)n = f(x,y,z)2 + g(x,y,z)2 + h(x,y,z)2

where f,g and h are nth power rational trinomials and n is an integer. The cubic fractal above is an example.

Taffy

Shapes with long strands are commonly described as looking like taffy and are considered less appealing.

Idealised 3D Mandelbrot Fractal

In the fractal community an idealised 3D Mandelbrot is considered to resemble a hierarchy of spheres just as the 2D Mandelbrot resembles a hierarchy of circles. The branch like structures of the 2D Mandelbrot should become twig-like structures of the 3D Mandelbrot. Such a fractal is considered the 'Holy Grail' of 3D fractal art.

See also

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Mandelbulb — Un Mandelbulb est un ensemble de Mandelbrot volumique. une représentation du Mandelbulb par itération de . L idée de sa réalisation occupe les esprits depuis 2007, mais fin 2009, Daniel White et Paul Nylander ont construit un Mandelbulb, un… …   Wikipédia en Français

  • Liste de fractales par dimension de Hausdorff — Cet article est une liste de fractales, ordonnées par dimension de Hausdorff croissante. En mathématiques, une fractale est un ensemble dont la dimension de Hausdorff (notée δ) est strictement supérieure à la dimension topologique[1]. Sommaire 1… …   Wikipédia en Français

  • Лампочка Мандельброта — Изображение лампочки Мандельброта полученное с помощью трассировки лучей. Итерация . Лампочка Мандель …   Википедия

  • Mandelbrot-Menge — Die Mandelbrot Menge ist eine fraktal erscheinende Menge, die eine bedeutende Rolle in der Chaosforschung spielt. Der Rand der Menge weist eine Selbstähnlichkeit auf, die jedoch nicht exakt ist, da es zu Verformungen kommt. Die Visualisierung der …   Deutsch Wikipedia

  • Ensemble de Mandelbrot — L ensemble de Mandelbrot (en noir) L ensemble de Mandelbrot est une fractale définie comme l ensemble des points c du plan complexe pour lesquels la suite définie par récurrence par  …   Wikipédia en Français

  • Mandelbrot set — Initial image of a Mandelbrot set zoom sequence with a continuously coloured environment …   Wikipedia

  • Digital art — Irrationnal Geometrics digital art installation 2008 by Pascal Dombis A close up of th …   Wikipedia

  • Fractale — On nomme figure fractale ou fractale par substantivation de l adjectif (ou encore en anglais fractal), une courbe ou surface de forme irrégulière ou morcelée qui se crée en suivant des règles déterministes ou stochastiques impliquant une… …   Wikipédia en Français

  • Nombre hypercomplexe — En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans… …   Wikipédia en Français

  • Mandelbox — A scale 2 Mandelbox …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”