Pontecorvo–Maki–Nakagawa–Sakata matrix

Pontecorvo–Maki–Nakagawa–Sakata matrix
Flavour in particle physics
Flavour quantum numbers:
  • Isospin: I or I3
  • Charm: C
  • Strangeness: S
  • Topness: T
  • Bottomness: B

Related quantum numbers:


Combinations:


Flavour mixing
  • CKM matrix
  • PMNS matrix
  • Flavour complementarity

This box: view · talk · edit

In particle physics, the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix), Maki–Nakagawa–Sakata matrix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix, is a unitary matrix[note 1] which contains information on the mismatch of quantum states of leptons when they propagate freely and when they take part in the weak interactions. It is important in the understanding of neutrino oscillations. This matrix was introduced in 1962 by Ziro Maki, Masami Nakagawa and Shoichi Sakata,[1] to explain the neutrino oscillations predicted by Bruno Pontecorvo.[2][3]

Contents

The matrix

For three generations of leptons, the matrix can be written as:

\begin{bmatrix} {\nu_e} \\ {\nu_\mu} \\ {\nu_\tau} \end{bmatrix} 
= \begin{bmatrix} U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix} \ .

On the left are the neutrino fields participating in the weak interaction, and on the right is the PMNS matrix along with a vector of the neutrino fields diagonalizing the neutrino mass matrix. The PMNS matrix describes the probability of a neutrino of given flavor α to be found in mass eigenstate i. These probabilities are proportional to |Uαi|2.

Various parametrizations of this matrix exist,[4] however due to the difficulties of detecting neutrinos, it is much more difficult to determine the individual coefficients than in the equivalent matrix for the quarks (the CKM matrix).

As a starting point, one recent particle physics course[5] provided the following estimated values for the matrix:

\begin{bmatrix} U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}
= \begin{bmatrix} 0.85 & 0.53 & 0 \\ -0.37 & 0.60 & 0.71 \\ 0.37 & -0.60 & 0.71 \end{bmatrix} \ .

See also

  • Neutrino oscillations
  • CKM matrix

Notes

  1. ^ The PMNS matrix is not unitary in the seesaw model

References

  1. ^ Z. Maki, M. Nakagawa, and S. Sakata (1962). "Remarks on the Unified Model of Elementary Particles". Progress of Theoretical Physics 28: 870. Bibcode 1962PThPh..28..870M. doi:10.1143/PTP.28.870. 
  2. ^ B. Pontecorvo (1957). "Mesonium and anti-mesonium". Zh. Eksp. Teor. Fiz. 33: 549–551.  reproduced and translated in Sov. Phys. JETP 6: 429. 1957. 
  3. ^ B. Pontecorvo (1967). "Neutrino Experiments and the Problem of Conservation of Leptonic Charge". Zh. Eksp. Teor. Fiz. 53: 1717.  reproduced and translated in Sov. Phys. JETP 26: 984. 1968. Bibcode 1968JETP...26..984P. 
  4. ^ J.W.F. Valle (2006). "Neutrino physics overview". Journal of Physics: Conference Series 53: 473. arXiv:hep-ph/0608101. doi:10.1088/1742-6596/53/1/031. 
  5. ^ http://www.hep.phy.cam.ac.uk/~thomson/partIIIparticles/handouts/Handout11_2010.pdf

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Neutrino oscillation — is a quantum mechanical phenomenon predicted by Bruno Pontecorvo[1] whereby a neutrino created with a specific lepton flavor (electron, muon or tau) can later be measured to have a different flavor. The probability of measuring a particular… …   Wikipedia

  • MSW-Effekt — Als Neutrinooszillation wird in der Physik die von Bruno Pontecorvo 1957 theoretisch vorhergesagte Umwandlung zwischen verschiedenen Elementarteilchen, den Elektron , Myon und Tau Neutrinos, aufgrund quantenmechanischer Prozesse bezeichnet. D. h …   Deutsch Wikipedia

  • Neutrino-Oszillation — Als Neutrinooszillation wird in der Physik die von Bruno Pontecorvo 1957 theoretisch vorhergesagte Umwandlung zwischen verschiedenen Elementarteilchen, den Elektron , Myon und Tau Neutrinos, aufgrund quantenmechanischer Prozesse bezeichnet. D. h …   Deutsch Wikipedia

  • Neutrinooszillation — Als Neutrinooszillation wird in der Physik die von Bruno Pontecorvo 1957 theoretisch vorhergesagte Umwandlung zwischen verschiedenen Elementarteilchen, den Elektron , Myon und Tau Neutrinos, aufgrund quantenmechanischer Prozesse bezeichnet. D. h …   Deutsch Wikipedia

  • Quark-Lepton complementarity — Recent neutrino experiments confirm that the Pontecorvo Maki Nakagawa Sakata(PMNS) lepton mixing matrix U {PMNS} contains large mixing angles.For example the atmospheric mixing heta {23}^{PMNS}is compatible with 45^circ,and the solar mixing heta… …   Wikipedia

  • Tribimaximal mixing — cite journal | author = P.F. Harrison, D. H. Perkins and W. G. Scott | title = Tribimaximal mixing and the neutrino oscillation data | journal = Physics Letters B | volume = 530 | year = 2002 | pages = 167 | url = http://arxiv.org/pdf/hep… …   Wikipedia

  • Double beta decay — is a radioactive decay process where a nucleus releases two beta rays as a single process. In double beta decay, two neutrons in the nucleus are converted to protons, and two electrons and two electron antineutrinos are emitted. In the process of …   Wikipedia

  • PMNS-матрица —   Аромат в физике элементарных частиц  п·Ароматы и квантовые числа: Лептонное число …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”