Magnus expansion

Magnus expansion

In mathematics and physics, the Magnus expansion, named after Wilhelm Magnus (1907–1990), provides an exponential representation of the solution of a first order linear homogeneous differential equation for a linear operator. In particular it furnishes the fundamental matrix of a system of linear ordinary differential equations of order \scriptstyle n with varying coefficients. The exponent is built up as an infinite series whose terms involve multiple integrals and nested commutators.

Contents

Magnus approach and its interpretation

Given the n × n coefficient matrix A(t) we want to solve the initial value problem associated with the linear ordinary differential equation

Y^{\prime}(t)=A(t)Y(t),\qquad\qquad Y(t_0)=Y_{0}

for the unknown n-dimensional vector function Y(t).

When n = 1, the solution reads

Y(t)= \exp \left( \int_{t_0}^{t}A(s)ds \right) \, Y_{0}.

This is still valid for n > 1 if the matrix A(t) satisfies A(t1)A(t2) = A(t2)A(t1) for any pair of values of t, t1 and t2. In particular, this is the case if the matrix A is constant. In the general case, however, the expression above is no longer the solution of the problem.

The approach proposed by Magnus to solve the matrix initial value problem is to express the solution by means of the exponential of a certain n × n matrix function Ω(t,t0),

  Y(t)=\exp \left( \Omega (t,t_0)\right) \, Y_0

which is subsequently constructed as a series expansion,

\Omega(t)=\sum_{k=1}^{\infty}\Omega_{k}(t),

where, for the sake of simplicity, it is customary to write down Ω(t) for Ω(t,t0) and to take t0 = 0. The equation above constitutes the Magnus expansion or Magnus series for the solution of matrix linear initial value problem.

The first four terms of this series read

\Omega_1(t)   =\int_0^t A(t_1)~\text{d}t_1,
\Omega_2(t)   =\frac{1}{2}\int_0^t \text{d}t_1 \int_0^{t_1} \text{d}t_2\ \left[  A(t_1),A(t_2)\right]
\Omega_3(t)  =\frac{1}{6} \int_0^t \text{d}t_1 \int_0^{t_{1}}\text{d} t_2 \int_0^{t_{2}} \text{d}t_3 \ (\left[  A(t_1),\left[
A(t_2),A(t_3)\right]  \right]  +\left[  A(t_3),\left[  A(t_2),A(t_{1})\right]  \right]  )
\Omega_4(t)  =\frac{1}{12} \int_0^t \text{d}t_1 \int_0^{t_{1}}\text{d} t_2 \int_0^{t_{2}} \text{d}t_3 \int_0^{t_{3}} \text{d}t_4 \ (\left[\left[\left[A_1,A_2\right],
A_3\right],A_4\right]+
\left[A_1,\left[\left[A_2,A_3\right],A_4\right]\right]+
\left[A_1,\left[A_2,\left[A_3,A_4\right]\right]\right]+
\left[A_2,\left[A_3,\left[A_4,A_1\right]\right]\right]
)

where \scriptstyle \left[  A,B\right]  \equiv AB-BA is the matrix commutator of A and B.

These equations may be interpreted as follows: Ω1(t) coincides exactly with the exponent in the scalar (n = 1) case, but this equation cannot give the whole solution. If one insists in having an exponential representation the exponent has to be corrected. The rest of the Magnus series provides that correction.

In applications one can rarely sum exactly the Magnus series and has to truncate it to get approximate solutions. The main advantage of the Magnus proposal is that, very often, the truncated series still shares with the exact solution important qualitative properties, at variance with other conventional perturbation theories. For instance, in classical mechanics the symplectic character of the time evolution is preserved at every order of approximation. Similarly the unitary character of the time evolution operator in quantum mechanics is also preserved (in contrast to the Dyson series).

Convergence of the expansion

From a mathematical point of view, the convergence problem is the following: given a certain matrix A(t), when can the exponent Ω(t) be obtained as the sum of the Magnus series? A sufficient condition for this series to converge for \scriptstyle t \in [0,T) is

   \int_0^T \|A(s)\| ds < \pi

where \scriptstyle \| \cdot \| denotes a matrix norm. This result is generic, in the sense that one may consider specific matrices A(t) for which the series diverges for any t > T.

Magnus generator

It is possible to design a recursive procedure to generate all the terms in the Magnus expansion. Specifically, with the matrices \textstyle S_n^{(k)} defined recursively through

S_{n}^{(j)} =\sum_{m=1}^{n-j}\left[ \Omega_{m},S_{n-m}^{(j-1)}\right],\qquad\qquad  2\leq j\leq n-1
S_{n}^{(1)} =\left[ \Omega _{n-1},A \right] ,\qquad S_{n}^{(n-1)}= \mathrm{ad} _{\Omega _{1}}^{n-1} (A)

one has

\Omega _{1} =\int_{0}^{t}A (\tau )d\tau
\Omega _{n} =\sum_{j=1}^{n-1}\frac{B_{j}}{j!}\int_{0}^{t}S_{n}^{(j)}(\tau)d\tau ,\qquad\qquad n\geq 2.

Here adk is a shorthand for an iterated commutator,

\mathrm{ad}_{\Omega}^0 A = A, \qquad \mathrm{ad}_{\Omega}^{k+1} A = [ \Omega, \mathrm{ad}_{\Omega}^k A ],

and Bj are the Bernoulli numbers.

When this recursion is worked out explicitly, it is possible to express Ωn as a linear combination of n-fold integrals of n − 1 nested commutators containing n matrices A,

    \Omega_n(t) =  \sum_{j=1}^{n-1} \frac{B_j}{j!} \,
    \sum_{
            k_1 + \cdots + k_j = n-1 \atop
            k_1 \ge 1, \ldots, k_j \ge 1}
            \, \int_0^t \,
       \mathrm{ad}_{\Omega_{k_1}(\tau )} \,  \mathrm{ad}_{\Omega_{k_2}(\tau )} \cdots
          \, \mathrm{ad}_{\Omega_{k_j}(\tau )} A(\tau ) \, d\tau     \qquad n \ge 2,

an expression that becomes increasingly intricate with n.

Applications

Since the 1960s, the Magnus expansion has been successfully applied as a perturbative tool in numerous areas of physics and chemistry, from atomic and molecular physics to nuclear magnetic resonance and quantum electrodynamics. It has been also used since 1998 as a tool to construct practical algorithms for the numerical integration of matrix linear differential equations. As they inherit from the Magnus expansion the preservation of qualitative traits of the problem, the corresponding schemes are prototypical examples of geometric numerical integrators.

See also

  • Baker–Campbell–Hausdorff formula
  • Fer expansion

References

  • W. Magnus (1954). "On the exponential solution of differential equations for a linear operator". Comm. Pure and Appl. Math. VII (4): 649–673. doi:10.1002/cpa.3160070404. 
  • S. Blanes, F. Casas, J.A. Oteo, J. Ros (1998). "Magnus and Fer expansions for matrix differential equations: The convergence problem". J. Phys. A: Math. Gen. 31 (1): 259–268. doi:10.1088/0305-4470/31/1/023. 
  • A. Iserles, S.P. Nørsett (1999). "On the solution of linear differential equations in Lie groups". Phil. Trans. R. Soc. Lond. A 357 (1754): 983–1019. doi:10.1098/rsta.1999.0362. 
  • S. Blanes, F. Casas, J.A. Oteo, J. Ros (2009). "The Magnus expansion and some of its applications". Phys. Rep. 470 (5-6): 151–238. doi:10.1016/j.physrep.2008.11.001. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Magnús Magnússon — (12 octobre 1929 – 7 janvier 2007) était un présentateur de télévision, journaliste, traducteur et écrivain. Né en Islande il a vécu en Écosse quasiment toute sa vie, bien qu il n ait jamais adopté la nationalité britannique. Bibliographie Fakers …   Wikipédia en Français

  • Magnus of Füssen — Saint Magnus of Füssen Statue of St Mang of Füssen outside the Basilica of St Mang in Füssen, Bavaria. Died 7th or 8th century Feast 6 September Saint …   Wikipedia

  • Magnus Magnusson — For other people named Magnús Magnússon or similar, see Magnus Magnusson (disambiguation). Magnus Magnusson Born 12 October 1929(1929 10 12) Reykjavík, Iceland Died 7 January 2007(2007 01 07) (aged 77) Balmore …   Wikipedia

  • Magnús Magnússon — Infobox Person name = Magnús Magnússon image size = caption = birth date = birth date|1929|10|12|df=y birth place = death date = death date and age|2007|1|7|1929|10|12|df=y death place = Balmore, Dunbartonshire, Scotland death cause = Pancreatic… …   Wikipedia

  • Ultra Magnus — is the name of several fictional characters from the various Transformers universes.Transformers: Generation 1Transformers character name = Ultra Magnus caption = affiliation = Autobot subgroup = Leaders Voyagers rank = 8 function = City… …   Wikipedia

  • Heinrich Gustav Magnus — Pour les articles homonymes, voir Magnus. Heinrich Gustav Magnus Heinrich Gustav Magnus Naissance …   Wikipédia en Français

  • Adductor magnus muscle — The adductor magnus and nearby muscles …   Wikipedia

  • Heinrich Gustav Magnus — Infobox Scientist name = Gustav Magnus |300px image width = 300px caption = Heinrich Gustav Magnus birth date = birth date|1802|5|2|df=y birth place = Berlin, Germany death date = death date and age|1870|4|4|1802|5|2|df=y death place = Berlin,… …   Wikipedia

  • Heinrich Magnus — Heinrich Gustav Magnus. Heinrich Gustav Magnus (2 de mayo de 1802 – 4 de abril de 1870) fue un químico y físico alemán. Al Efecto Magnus, enunciado por él, se le llamó así después de su muerte …   Wikipedia Español

  • Vytautas Magnus University — Infobox University name=Vytautas Magnus University native name=Vytauto Didžiojo universitetas established=1922 type=Public campus=Urban staff= rector=Prof Zigmas Lydeka city=Kaunas country = Lithuania (EU) students= 9000… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”