Gorenstein–Walter theorem
- Gorenstein–Walter theorem
-
In mathematics, the Gorenstein–Walter theorem, proved by Gorenstein and Walter (1965a, 1965b, 1965c), states that if a finite group G has a dihedral Sylow 2-subgroup, and O(G) is the maximal normal subgroup of odd order, then G/O(G) is isomorphic to a 2-group, or the alternating group A7, or a subgroup of PΓL22(q) containing PSL2(q) for q an odd prime power.
References
- Gorenstein, D.; Walter, John H. (1965a), "The characterization of finite groups with dihedral Sylow 2-subgroups. I", Journal of Algebra 2 (1): 85–151, doi:10.1016/0021-8693(65)90027-X, ISSN 0021-8693, MR0177032
- Gorenstein, D.; Walter, John H. (1965b), "The characterization of finite groups with dihedral Sylow 2-subgroups. II", Journal of Algebra 2 (2): 218–270, doi:10.1016/0021-8693(65)90019-0, ISSN 0021-8693, MR0177032
- Gorenstein, D.; Walter, John H. (1965c), "The characterization of finite groups with dihedral Sylow 2-subgroups. III", Journal of Algebra 2 (3): 354–393, doi:10.1016/0021-8693(65)90015-3, ISSN 0021-8693, MR0190220
Wikimedia Foundation.
2010.
Look at other dictionaries:
Daniel Gorenstein — Daniel E. Gorenstein Born January 1, 1923(1923 01 01) Boston, Massachusetts … Wikipedia
Feit–Thompson theorem — In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963) Contents 1 History 2 Significance of the proof … Wikipedia
Classification of finite simple groups — Group theory Group theory … Wikipedia
Richard Brauer — Infobox Scientist name = Richard Brauer box width = image width = 150px caption = Richard Brauer birth date = February 10, 1901 birth place = death date = April 17, 1977 death place = residence = citizenship = nationality = United States, Germany … Wikipedia
Théorème de Feit et Thompson — En mathématiques, et plus précisément en théorie des groupes, le théorème de Feit et Thompson, appelé aussi théorème de l ordre impair, dit que tout groupe fini d ordre impair est résoluble, ce qui équivaut à dire que tout groupe simple fini non… … Wikipédia en Français
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia
Oscar Zariski — (1899–1986) Born April 24, 1899(1 … Wikipedia
algebra — /al jeuh breuh/, n. 1. the branch of mathematics that deals with general statements of relations, utilizing letters and other symbols to represent specific sets of numbers, values, vectors, etc., in the description of such relations. 2. any of… … Universalium
Einfache Gruppe — Endliche einfache Gruppen, im Folgenden kurz als einfache Gruppen bezeichnet, gelten in der Gruppentheorie (einem Teilgebiet der Mathematik) als die Bausteine der endlichen Gruppen. Einfache Gruppen spielen für die endlichen Gruppen eine ähnliche … Deutsch Wikipedia
Endliche einfache Gruppe — Endliche einfache Gruppen, im Folgenden kurz als einfache Gruppen bezeichnet, gelten in der Gruppentheorie (einem Teilgebiet der Mathematik) als die Bausteine der endlichen Gruppen. Einfache Gruppen spielen für die endlichen Gruppen eine ähnliche … Deutsch Wikipedia