Pseudoideal

Pseudoideal

Contents

Basic definitions

LU(A) is the set of all lower bounds of the set of all upper bounds of the subset A of a partially ordered set.

A subset I of a partially ordered set (P,≤) is a Doyle pseudoideal, if the following condition holds:

For every finite subset S of P which has a supremum in P, S\subseteq I implies that LU(S) \subseteq I.

A subset I of a partially ordered set (P,≤) is a pseudoideal, if the following condition holds:

For every subset S of P having at most two elements which has a supremum in P, S\subseteq I implies that LU(S) \subseteq I.

Remarks

  1. Every Frink ideal I is a Doyle pseudoideal.
  2. A subset I of a lattice (P,≤) is a Doyle pseudoideal if and only if it is a lower set that is closed under finite joins (suprema).

Related notions

  • Frink ideal

References

  • Abian, A., Amin, W. A., Existence of prime ideals and ultrafilters in partially ordered sets. Czechoslovak Math. J., 40 (1990), 159–163.
  • Doyle, W., An arithmetical theorem for partially ordered sets. Bull. Amer. Math. Soc., 56 (1950), 366.
  • Niederle, J., Ideals in ordered sets. Rendiconti Circ. Math. Palermo, 55 (2006), 287–295.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • pseudoideal — noun The set of all lower bounds of the set of all upper bounds of a subset of a partially ordered set …   Wiktionary

  • Theta-Temperatur — The|ta Tem|pe|ra|tur, Θ Tem|pe|ra|tur [↑ Theta (2)]; veraltetes Syn.: Flory Temperatur: Bez. für diejenige charakteristische Temp., bei der sich die Lsg. eines Polymers in einem spezif. Lsgm (Θ Lösungsmittel, z. B. Cyclohexan für Polystyrol,… …   Universal-Lexikon

  • Θ-Temperatur — The|ta Tem|pe|ra|tur, Θ Tem|pe|ra|tur [↑ Theta (2)]; veraltetes Syn.: Flory Temperatur: Bez. für diejenige charakteristische Temp., bei der sich die Lsg. eines Polymers in einem spezif. Lsgm (Θ Lösungsmittel, z. B. Cyclohexan für Polystyrol,… …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”