Dickson invariant

Dickson invariant

In mathematics, the Dickson invariant, named after Leonard Eugene Dickson, may mean:


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Dickson's lemma — In mathematics, Dickson s lemma is a finiteness statement applying to n tuples of natural numbers. It is a simple fact from combinatorics, which has become attributed to the American algebraist L. E. Dickson. It was certainly known earlier, for… …   Wikipedia

  • Modular invariant of a group — In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by… …   Wikipedia

  • Leonard Eugene Dickson — (22 January1874, Independence, Iowa – 17 January1954, Harlingen, Texas) (often called L. E. Dickson) was an American mathematician. He was one of the first American researchers in abstract algebra, in particular the theory of finite fields and… …   Wikipedia

  • Orthogonal group — Group theory Group theory …   Wikipedia

  • Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… …   Wikipedia

  • Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… …   Wikipedia

  • List of finite simple groups — In mathematics, the classification of finite simple groups states thatevery finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type (including the Tits group, which strictly speaking is not of Lie type),or… …   Wikipedia

  • Classical group — For the book by Weyl, see The Classical Groups. Lie groups …   Wikipedia

  • Algebre semi-simple — Algèbre semi simple En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est… …   Wikipédia en Français

  • Algèbre Semi-simple — En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est présente dans de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”