Derrick's theorem

Derrick's theorem

Derrick's theorem is an argument due to a physicist G.H. Derrick which shows that stationary localized solutions to a nonlinear wave equation or nonlinear Klein–Gordon equation in dimensions three and higher are unstable.

Contents

Original argument

Derrick's paper[1], which was considered an obstacle to interpreting soliton-like solutions as particles, contained the following physical argument about non-existence of stable localized stationary solutions, now known under the name of Derrick's Theorem.

Let the energy of the time-independent solution \theta(x)\, be given by


E=\int\left[(\nabla\theta)^2+f(\theta)\right] \, d^3 x.

A necessary condition for the solution to be stable is \delta^2 E\ge 0\,. Suppose \theta(x)\, is a localized solution of \delta E=0\,. Define \theta_\lambda(x)=\theta(\lambda x)\, where λ is an arbitrary constant, and write I_1=\int(\nabla\theta)^2 d^3 x, I_2=\int f(\theta) d^3 x. Then


E_\lambda
=\int\left[(\nabla\theta_\lambda)^2+f(\theta_\lambda)\right]d^3 x
=I_1/\lambda +I_2/\lambda^3.

Whence 
(dE_\lambda/d\lambda)\vert_{\lambda=1}=-I_1-3I_2=0\,, and since I_1>0\,,


(d^2E_\lambda/d\lambda^2)\vert_{\lambda=1}=2 I_1+12I_2=-2I_1\,<0.

That is, \delta^2 E<0\, for a variation corresponding to a uniform stretching of the particle. Hence the solution \theta(x)\, is unstable.

The above argument also works for x\in\R^n, n>3\,.

Interpretation in the Hamiltonian form

The argument implies that we consider the nonlinear wave equation


\partial_t^2\psi=\Delta\psi-\frac{1}{2}f'(\psi),\qquad \psi=\psi(x,t),\quad x\in\R^n.

We may write this equation in the Hamiltonian form \partial_t u=\delta_v H(u,v), \partial_t v=-\delta_u H(u,v), where u,\,v are functions of x\in\R^n,\,t\in\R, the Hamilton function is given by


H(u,v)=\int_{\R^n}\left(
\frac{1}{2}|v|^2+\frac{1}{2}|\nabla u|^2+\frac{1}{2}f(u)
\right)\,dx,

and \delta_u H\,, \delta_v H\, are the variational derivatives of H(u,v)\,.

Then the stationary solution \psi(x,t)=\theta(x)\, has the energy H(\theta,0)=\int_{\R^n}\left(
\frac{1}{2}|\nabla\theta|^2+\frac{1}{2}f(\theta)
\right)\,d^n x and satisfies the equation


0=\partial_t \theta(x)=-\partial_u H(\theta,0)=\frac{1}{2}E'(\theta),

with E'\, denoting a variational derivative of the functional E=\int_{\R^n}[\vert\nabla\theta\vert^2+f(\theta)]\,d^n x. Although the solution \theta(x)\, is a critical point of E\, (since E'(\theta)=0\,), Derrick's argument shows that \frac{d^2}{d\lambda\,^2}E(\theta(\lambda x))<0 at \lambda=1\,, hence \psi(x,t)=\theta(x)\, is not a point of the local minimum of the energy functional H\,. Therefore, physically, the solution \theta(x)\, is expected to be unstable.

Stability of localized time-periodic solutions

Derrick describes some possible ways out of this difficulty, including the conjecture that Elementary particles might correspond to stable, localized solutions which are periodic in time, rather than time-independent. Indeed, it was later shown[2] that a time-periodic solitary wave u(x,t)=\phi_\omega(x)e^{-i\omega t}\, with frequency \omega\, may be orbitally stable if the Vakhitov–Kolokolov stability criterion is satisfied.

See also

References

  1. ^ G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Mathematical Phys. 5 (1964), pp. 1252–1254.
  2. ^ N.G. Vakhitov and A.A. Kolokolov, Stationary solutions of the wave equation in the medium with nonlinearity saturation, Radiophys. Quantum Electron. 16 (1973), pp. 783–789 (Вахитов, Н. Г. and Колоколов, А. А., Стационарные решения волнового уравнения в среде с насыщением нелинейности, Известия высших учебных заведений. Радиофизика 16 (1973), стр. 1020–1028).

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Derrick Henry Lehmer — Born February 23, 1905(1905 02 23) Berkeley, California Died May 22, 1991(1991 05 22) (aged&# …   Wikipedia

  • Derrick Norman Lehmer — Born July 27, 1867(1867 07 27) Somerset, Indiana, United States Died September 8, 1938(1938 09 08) Berkeley, California, United States Education …   Wikipedia

  • Prime number — Prime redirects here. For other uses, see Prime (disambiguation). A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is… …   Wikipedia

  • Функция Эйлера — Не следует путать с функцией распределения простых чисел. Первая тысяча значений Функция Эйлера φ(n) мультипликативная …   Википедия

  • List of eponyms — An eponym is a person (real or fictitious) from whom something is said to take its name. The word is back formed from eponymous , from the Greek eponymos meaning giving name . NOTOC Here is a list of eponyms:A B C D E F G H I–J K L–ZA* Achilles,… …   Wikipedia

  • Donald Dines Wall — Born August 13, 1921(1921 08 13) Kansas City, Missouri Died November 28, 2000(2000 11 28) (aged …   Wikipedia

  • Prime-counting function — In mathematics, the prime counting function is the function counting the number of prime numbers less than or equal to some real number x cite book |first=Eric |last=Bach |coauthors=Shallit, Jeffrey |year=1996 |title=Algorithmic Number Theory… …   Wikipedia

  • Lucas–Lehmer test for Mersenne numbers — This article is about the Lucas–Lehmer test (LLT), that only applies to Mersenne numbers. There is also a Lucas Lehmer Riesel test for numbers of the form N=k 2^n 1, with 2^n > k, based on the LLT: see Lucas Lehmer Riesel test. There is also a… …   Wikipedia

  • Louis Joel Mordell — Louis Mordell in Nizza, 1970 Louis Joel Mordell (* 28. Januar 1888 in Philadelphia, USA; † 12. März 1972 in Cambridge, England) war ein amerikanisch britischer Mathematiker, der vor allem in der Zahlentheorie, spezi …   Deutsch Wikipedia

  • Louis Mordell — in Nizza, 1970 Louis Joel Mordell (* 28. Januar 1888 in Philadelphia, USA; † 12. März 1972 in Cambridge, England) war ein amerikanisch britischer Mathematiker, der vor allem in der Zahlentheorie, speziell der …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”