Kervaire invariant — In mathematics, the Kervaire invariant, named for Michel Kervaire, is defined in geometric topology. It is an invariant of 4 n + 2 dimensional almost parallelizable smooth manifolds M , taking values in the 2 element group :Z/2Z. It is equal to… … Wikipedia
Kervaire — Michel André Kervaire (* 26. April 1927 in Częstochowa, Polen; † 19. November 2007 in Genf) war ein schweizerischer Mathematiker, der sich vor allem mit Topologie (Differentialtopologie, algebraische Topologie) und Algebra beschäftigte. Er war… … Deutsch Wikipedia
Mazur manifold — In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth 4 dimensional manifold which is not diffeomorphic to the standard 4 ball. The boundary of a Mazur manifold is necessarily a homology 3 sphere.… … Wikipedia
Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… … Wikipedia
Michel Kervaire — Born 26 April 1927(1927 04 26) Częstochowa, Poland Died 19 November 2007(2007 11 19) … Wikipedia
Michel Kervaire — Michel André Kervaire (* 26. April 1927 in Częstochowa, Polen; † 19. November 2007 in Genf) war ein Schweizer Mathematiker, der sich vor allem mit Topologie (Differentialtopologie, algebraische Topologie) und Algebra beschäftigte. Er war der Sohn … Deutsch Wikipedia
Parallelizable manifold — In mathematics, a parallelizable manifold M is a smooth manifold of dimension n having vector fields: V 1, ..., V n , such that at any point P of M the tangent vectors: V i , P provide a basis of the tangent space at P . Equivalently, the tangent … Wikipedia
Exotic sphere — In differential topology, a mathematical discipline, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n sphere. That is, M is a sphere from the point of view of all its… … Wikipedia
Rokhlin's theorem — In 4 dimensional topology, a branch of mathematics, Rokhlin s theorem states that if a smooth, compact 4 manifold M has a spin structure (or, equivalently, the second Stiefel Whitney class w 2( M ) vanishes), then the signature of its… … Wikipedia
Differential structure — In mathematics, an n dimensional differential structure (or differentiable structure) on a set M makes M into an n dimensional differential manifold, which is a topological manifold with some additional structure that allows us to do differential … Wikipedia