Simplicial sphere

Simplicial sphere

In geometry and combinatorics, a simplicial (or combinatorial) d-sphere is a simplicial complex homeomorphic to the d-dimensional sphere. Some simplicial spheres arise as the boundaries of convex polytopes, however, in higher dimensions most simplicial spheres cannot be obtained in this way.

The most important open problem in the field is the g-conjecture, formulated by Peter McMullen, which asks about possible numbers of faces of different dimensions of a simplicial sphere.

Contents

Examples

  • For any n ≥ 3, the simple n-cycle Cn is a simplicial circle, i.e. a simplicial sphere of dimension 1. This construction produces all simplicial circles.

Properties

It follows from Euler's formula that any simplicial 2-sphere with n vertices has 3n − 6 edges and 2n − 4 faces. The case of n = 4 is realized by the tetrahedron. By repeatedly performing the barycentric subdivision, it is easy to construct a simplicial sphere for any n ≥ 4. Moreover, Ernst Steinitz gave a characterization of 1-skeleta (or edge graphs) of convex polytopes in R3 implying that any simplicial 2-sphere is a boundary of a convex polytope.

Branko Grünbaum constructed an example of a non-polytopal simplicial sphere. Gil Kalai proved that, in fact, "most" simplicial spheres are non-polytopal. The smallest example is of dimension d = 4 and has f0 = 8 vertices.

The Upper Bound Conjecture gives upper bounds for the numbers fi of i-faces of any simplicial d-sphere with f0 = n vertices. This conjecture was proved for polytopal spheres by Peter McMullen in 1970 and by Richard Stanley for general simplicial spheres in 1975.

The g-conjecture, formulated by McMullen in 1970, asks for a complete characterization of f-vectors of simplicial d-spheres. In other words, what are the possible sequences of numbers of faces of each dimension for a simplicial d-sphere? In the case of polytopal spheres, the answer is given by the g-theorem, proved in 1979 by Billera and Lee (existence) and Stanley (necessity). It has been conjectured that the same conditions are necessary for general simplicial spheres. The conjecture is open for d at least 5 (as of 2009).

See also

References

  • Richard Stanley, Combinatorics and commutative algebra. Second edition. Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1996. x+164 pp. ISBN 0-8176-3836-9

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Complexe simplicial — Pour les articles homonymes, voir Complexe. Représentation d un complexe simplicial. En mathématiques, un complexe simplicial est un objet géométri …   Wikipédia en Français

  • Homology sphere — In algebraic topology, a homology sphere is an n manifold X having the homology groups of an n sphere, for some integer n ≥ 1. That is, we have: H 0( X ,Z) = Z = H n ( X ,Z)and : H i ( X ,Z) = {0} for all other i .Therefore X is a connected space …   Wikipedia

  • Dehn–Sommerville equations — In mathematics, the Dehn–Sommerville equations are a complete set of linear relations between the numbers of faces of different dimension of a simplicial polytope. For polytopes of dimension 4 and 5, they were found by Max Dehn in 1905. Their… …   Wikipedia

  • Cyclic polytope — In mathematics, a cyclic polytope, denoted C(n,d), is a convex polytope formed as a convex hull of n distinct points on a rational normal curve in Rd, where n is greater than d. These polytopes were studied by Constantin Carathéodory, David Gale …   Wikipedia

  • Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Simplex — For other uses, see Simplex (disambiguation). A regular 3 simplex or tetrahedron In geometry, a simplex (plural simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimension. Specifically, an n… …   Wikipedia

  • TOPOLOGIE - Topologie algébrique — Inventée au début du XXe siècle pour résoudre des problèmes géométriques, la topologie algébrique connut un grand développement grâce à l’introduction de constructions algébriques de plus en plus abstraites. Pour clarifier l’exposé, on a… …   Encyclopédie Universelle

  • Zonohedron — A zonohedron is a convex polyhedron where every face is a polygon with point symmetry or, equivalently, symmetry under rotations through 180°. Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three… …   Wikipedia

  • Triangulation (topology) — In mathematics, topology generalizes the notion of triangulation in a natural way as follows: A triangulation of a topological space X is a simplicial complex K , homeomorphic to X , together with a homeomorphism h : K o X . Triangulation is… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”