Clebsch surface

Clebsch surface

In mathematics, the Clebsch diagonal cubic surface, or Klein's icosahedral cubic surface is a cubic surface studied by Clebsch (1871) and Klein (1873) all of whose 27 exceptional lines can be defined over the real numbers. The term Klein's icosahedral surface can refer to either this surface or its blowup at the 10 Eckardt points.

Contents

Definition

The Clebsch surface is the set of points (x0:x1:x2:x3:x4) of P4 satisfying the equations

\displaystyle x_0+x_1+x_2+x_3+x_4 = 0
\displaystyle x_0^3+x_1^3+x_2^3+x_3^3+x_4^3 = 0.

Eliminating x0 shows that it is also isomorphic to the surface

\displaystyle x_1^3+x_2^3+x_3^3+x_4^3 = (x_1+x_2+x_3+x_4)^3

in P3.

The symmetry group of the surface is the symmetric group S5 of order 120, acting by permutations of the coordinates (in P4). Up to isomorphism, the Clebsch surface is the only cubic surface with this automorphism group.

Properties

The 27 exceptional lines are:

  • The 15 images (under S5) of the line of points of the form (a : −a : b : −b : 0).
  • The 12 images of the line though the point (1:ζ: ζ2: ζ3: ζ4) and its complex conjugate, where ζ is a primitive 5th root of 1.

The surface has 10 Eckardt points where 3 lines meet, given by the point (1 : −1 : 0 : 0 : 0) and its conjugates under permutations. Hirzebruch (1976) showed that the surface obtained by blowing up the Clebsch surface in its 10 Eckardt points is the Hilbert modular surface of the level 2 principal congruence subgroup of the Hilbert modular group of the field Q(√5). The quotient of the Hilbert modular group by its level 2 congruence subgroup is isomorphic to the alternating group of order 60 on 5 points.

Like all nonsingular cubic surfaces, the Clebsch cubic can be obtained by blowing up the projective plane in 6 points. Klein (1873) described these points as follows. If the projective plane is identified with the set of lines through the origin in a 3-dimensional vector space containing an icosahedron centered at the origin, then the 6 points correspond to the 6 lines through the centers of the 12 vertices. The Eckardt points correspond to the 10 lines through the centers of the 20 faces.

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • CLEBSCH (R. F. A.) — CLEBSCH RUDOLF FRIEDRICH ALFRED (1833 1872) Né à Koenigsberg, Clebsch fit ses études à l’université de sa ville natale (1850 1854). Quoique Jacobi ne donnât plus de cours, l’école qu’il avait fondée était toujours florissante et parmi les… …   Encyclopédie Universelle

  • Cubic surface — A cubic surface is a projective variety studied in algebraic geometry. It is an algebraic surface in three dimensional projective space defined by a single polynomial which is homogeneous of degree 3 (hence, cubic). Cubic surfaces are del Pezzo… …   Wikipedia

  • Alfred Clebsch — Rudolf Friedrich Alfred Clebsch Born 19 January 1833( …   Wikipedia

  • Rational surface — In algebraic geometry, a branch of mathematics, a rational surface is a surface birationally equivalent to the projective plane, or in other words a rational variety of dimension two. Rational surfaces are the simplest of the 10 or so classes of… …   Wikipedia

  • List of algebraic surfaces — This is a list of named (classes of) algebraic surfaces and complex surfaces. The notation κ stands for the Kodaira dimension, which divides surfaces into four coarse classes.Algebraic and complex surfaces * abelian surfaces (κ = 0) Two… …   Wikipedia

  • Felix Klein — Born 25 April 1849(1849 04 25) Düsseldorf, Rhine, P …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • NOETHER (M.) — NOETHER MAX (1844 1921) Mathématicien allemand, Max Noether a été un des meilleurs spécialistes en géométrie algébrique de la seconde moitié du XIXe siècle. Élève de Rudolf Clebsch, il a poursuivi le programme de ce dernier, c’est à dire la… …   Encyclopédie Universelle

  • Frobenius theorem (differential topology) — In mathematics, Frobenius theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first order homogeneous linear partial differential equations. In modern geometric terms …   Wikipedia

  • Felix Klein — Pour les articles homonymes, voir Klein. Felix Klein …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”