Bipartite dimension

Bipartite dimension

In the mathematical field of graph theory, the bipartite dimension of an graph G=(V,E) is the minimum number of bicliques, that is, complete bipartite subgraphs, needed to cover all edges in E. A collection of bicliques covering all edges in G is called a biclique edge cover, or sometimes biclique cover. The bipartite dimension of G is often denoted by the symbol d(G). An example for a biclique edge cover is given in the following diagrams:


Bipartite dimension of some special graphs

Fishburn and Hammer determine the bipartite dimension for some special graphs. For example, the path P_n has d(P_n) = lfloor n/2 floor, the cycle C_n has d(C_n)=lceil n/2 ceil, and the complete graph K_n has d(K_n) = lceillog n ceil.

Computational complexity

Determining d(G) is an optimization problem. The decision problem for bipartite dimension can be phrased as:

:INSTANCE: A graph G=(V,E) and a positive integer k.:QUESTION: Does G admit a biclique edge cover containing at most k bicliques?

This problem is NP-complete, even for bipartite graphs, as proved by Orlin. It appears as problem GT18 in Garey and Johnson's classical book on NP-completeness. This decision problem is a rather straightforward reformulation of another decision problem on families of finite sets, the "set basis problem", proved to be NP-complete earlier by Stockmeyer, and appearing as problem SP7 in Garey and Johnson's book.Here, for a family mathcal{S}={S_1,ldots,S_n} of subsets of a finite set mathcal{U}, a set basis for mathcal{S} is another family of subsets mathcal{B} = {B_1,ldots,B_ell} of mathcal{U}, such that every set S_i can be described as the union of some basis elements from mathcal{B}. The set basis problem is now given as follows:

:INSTANCE: A finite set mathcal{U}, a family mathcal{S}={S_1,ldots,S_n} of subsets of mathcal{U}, and a positive integer k.:QUESTION: Does there exist a set basis of size at most k for mathcal{S}?

References

* P. C. Fishburn and P. L. Hammer. Bipartite dimensions and bipartite degrees of graphs. "Discrete Mathematics", 160:127-148, 1996
* M. R. Garey and D. S. Johnson. "". Freeman, 1979.
* S. Monson, N. Pullman, and R. Rees: A survey of clique and biclique coverings and factorizations of (0,1)-matrices. "Bulletin of the ICA", vol 14, pp. 17--86, 1995.
* J. Orlin. Contentment in Graph Theory: Covering Graphs with Cliques. "Indagationes Mathematicae", 80:406–424, 1977.
* Larry J. Stockmeyer. The set basis problem is NP-complete. Technical Report RC-5431, IBM, 1975.

ee also

List of NP-complete problems

External Links

[http://11011110.livejournal.com/134829.html blog entry about bipartite dimension by David Eppstein]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Dimension (disambiguation) — A dimension is a spatial characteristic of an object; that is, length, width, or height. Dimension may also be: Contents 1 Science: 2 Mathematics: 3 Media: 4 Other …   Wikipedia

  • Metric dimension (graph theory) — In graph theory, the metric dimension of a graph G is the minimum number of vertices in a subset S of G such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP …   Wikipedia

  • Crown graph — Crown graphs with six, eight, and ten vertices. In graph theory, a branch of mathematics, a crown graph on 2n vertices is an undirected graph with two sets of vertices ui and vi and with an edge from ui to vj whenever i ≠ j. The crown… …   Wikipedia

  • Clique (graph theory) — A graph with 23 1 vertex cliques (its vertices), 42 2 vertex cliques (its edges), 19 3 vertex cliques (the light blue triangles), and 2 4 vertex cliques (dark blue). Six of the edges and 11 of the triangles form maximal cliques. The two dark blue …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Intersection number (graph theory) — In the mathematical field of graph theory, the intersection number of a graph is the smallest number of elements in a representation of G as an intersection graph of finite sets. Equivalently, it is the smallest number of cliques needed to cover… …   Wikipedia

  • Dilworth's theorem — In mathematics, in the areas of order theory and combinatorics, Dilworth s theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician …   Wikipedia

  • Modele d'Ising — Modèle d Ising Le modèle d Ising (parfois aussi appelé modèle de Lenz Ising), dénommé d après le physicien Ernst Ising, est un modèle de physique statistique. Il a été utilisé pour modéliser différents phénomènes dans lesquels des effets… …   Wikipédia en Français

  • Modèle d'Ising — Le modèle d Ising (parfois aussi appelé modèle de Lenz Ising), dénommé d après le physicien Ernst Ising, est un modèle de physique statistique. Il a été utilisé pour modéliser différents phénomènes dans lesquels des effets collectifs sont… …   Wikipédia en Français

  • Modèle de Ising — Modèle d Ising Le modèle d Ising (parfois aussi appelé modèle de Lenz Ising), dénommé d après le physicien Ernst Ising, est un modèle de physique statistique. Il a été utilisé pour modéliser différents phénomènes dans lesquels des effets… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”