Cluster expansion

Cluster expansion

In statistical mechanics, the cluster expansion (also called the high temperature expansion or hopping expansion) is a power series expansion of the partition function of a statistical field theory around a model that is a union of non-interacting 0-dimensional field theories. Cluster expansions originated in the work of Mayer & Montroll (1941). Unlike the usual perturbation expansion, it converges in some non-trivial regions, in particular when the interaction is small.

Contents

Classical case

General Theory

In statistical mechanics, the properties of a system of interacting particles are described using the partition function. For N noninteracting particles, the system is described by the Hamiltonian

 \big. H_0=\sum_i^N \frac{p_i^2}{2m},

and the partition function can be calculated (for the classical case) as

\big. Z_0 =\frac{1}{N!h^{3N}}\int \prod_i d\vec{p}_i\;d\vec{r}_i \exp\left\{ -\beta H_0(\{r_i,p_i\})\right\}
=\frac{V^N}{N!h^{3N}}\left(  \frac{2\pi m}{\beta} \right)^{\frac{3N}{2}}.

From the partition function, one can calculate the Helmholtz free energy \big. F_0=-k_BT\ln Z_0 and, from that, all the thermodynamic properties of the system, like the entropy, the internal energy, the chemical potential etc.

When the particles of the system interact, an exact calculation of the partition function is usually not possible. For low density, the interactions can be approximated with a sum of two - particle potentials:

\big.
U\left( \{r_i\} \right) = \sum_{i=1, i<j}^N u_2(|\vec{r}_i-\vec{r}_j|) = 
\sum_{i=1, i<j}^N u_2(r_{ij}).

For this interaction potential, the partition function can be written as

\big. Z =Z_0 \ Q ,

and the free energy is

F=F_0 - k_BT\!\ln\left( Q \right) ,

where Q is the configuration integral:

 Q=\frac{1}{V^N}\int \prod_i d\vec{r}_i\exp\left\{
-\beta  \sum_{i=1, i<j}^N u_2(r_{ij})
\right\}.

Calculation of the configuration integral

The configuration integral Q cannot be calculated analytically for a general pair potential u2(r). One way to calculate the potential approximately is to use the Mayer cluster expansion. This expansion is based on the observation that the exponential in the equation for Q can be written as a product of the form


\exp\left\{
-\beta  \sum_{i=1, i<j}^N u_2(r_{ij})
\right\}=\prod_{i=1, i<j}^N\exp\left\{ -\beta u_2(r_{ij}) \right\}
.

Next, define the Mayer function fij by \exp\left\{ -\beta u_2(r_{ij}) \right\}=1+f_{ij}. After substitution, the equation for the configuration integral becomes:

\big. 
Q=\frac{1}{V^N}\int \prod_i d\vec{r}_i
\prod_{i=1, i<j}^N \left(1+f_{ij}\right)

The calculation of the product in the above equation leads into a series of terms; the first is equal to one, the second term is equal to the sum over i and j of the terms fij, and the process continues until all the higher order terms are calculated.

 
\prod_{i=1, i<j}^N \left(1+f_{ij}\right)=
1+ \sum_{i=1, i<j}^N\; f_{ij} + \sum_{i=1,i<j,k=1,k<l}^N \;f_{ij}\;f_{kl}+\cdots

With this expansion it is possible to find terms of different order, in terms of the number of particles that are involved. The first term is the single particle term, the second term corresponds to the two particle interactions, the third to the three particle interactions, and so on. This physical interpretation is the reason this expansion is called the cluster expansion; each term represents the interactions within clusters of a certain number of particles.

Substituting the expansion of the product back into the expression for the configuration integral results in a series expansion for Q:

\big.
Q=1+\frac{N}{V}\alpha_1 + \frac{N\;(N-1)}{2\;V^2}\alpha_2+\cdots.

Substituting in the equation for the free energy, it is possible to derive the equation of state for the system of interacting particles. The equation will have the form


PV=Nk_BT\left( 1 + \frac{N}{V}B_2(T) + \frac{N^2}{V^2}B_3(T) + \frac{N^3}{V^3}B_4(T)+ \cdots \right)
,

which is known as the Virial equation, and the components Bi(T) are the Virial coefficients. Each of the virial coefficients corresponds to one term from the cluster expansion (B2(T) is the two particle interaction term, B3(T) is the three particle interaction term and so on). Keeping only the two particle interaction term, it can be shown that the cluster expansion, some approximations, gives the Van der Waals equation.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Cluster(physique) — Cluster (physique) Pour les articles homonymes, voir Cluster. En physique, le mot anglais cluster est utilisé pour désigner des agrégats d atomes pouvant contenir entre 3 et 3 107 atomes et liés chimiquement entre eux. Cependant ces limites… …   Wikipédia en Français

  • cluster — clusteringly, adv. clustery, adj. /klus teuhr/, n. 1. a number of things of the same kind, growing or held together; a bunch: a cluster of grapes. 2. a group of things or persons close together: There was a cluster of tourists at the gate. 3. U.S …   Universalium

  • Cluster (physique) — Cet article traite des clusters du point de vue de la physique des matériaux ; pour la chimie des clusters, se reporter à l article Agrégat atomique. Pour les articles homonymes, voir Cluster. En physique, le mot anglais cluster est utilisé… …   Wikipédia en Français

  • Coupled cluster — Electronic structure methods Tight binding Nearly free electron model Hartree–Fock method Modern valence bond Generalized valence bond Møller–Plesset perturbation theory …   Wikipedia

  • star cluster — Astron. a number of stars of common origin held together as a group by gravitational attraction. Cf. globular cluster, open cluster, stellar association. * * * ▪ astronomy Introduction  either of two general types of stellar assemblages held… …   Universalium

  • Gas cluster ion beam — Gas Cluster Ion Beams (GCIB) is a new technology for nano scale modification of surfaces. It can smooth a wide variety of surface material types to within an angstrom of roughness without subsurface damage. It is also used to chemically alter… …   Wikipedia

  • Water cluster — In chemistry a water cluster is a discrete hydrogen bonded assembly or cluster of molecules of water [cite journal | title = Water: From Clusters to the Bulk | author = Ralf Ludwig | journal = Angew. Chem. Int. Ed. | year = 2001 | volume = 40 |… …   Wikipedia

  • Determination de la constante d'expansion de l'univers — Détermination de la constante de Hubble Sommaire 1 Introduction 2 Données et résultats d’observations 2.1 Premières recherches et outils physiques utilisés 2.1.1 …   Wikipédia en Français

  • Détermination de la constante d'expansion de l'univers — Détermination de la constante de Hubble Sommaire 1 Introduction 2 Données et résultats d’observations 2.1 Premières recherches et outils physiques utilisés 2.1.1 …   Wikipédia en Français

  • Debashis Mukherjee — At the 12th ICQC in Kyoto, 2006 Born 17 December 1946( …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”