Lee–Yang theorem

Lee–Yang theorem

In statistical mechanics, the Lee-Yang theorem states that if partition functions of certain models in statistical field theory with ferromagnetic interactions are considered as functions of an external field, then all zeros are purely imaginary (or on the unit circle after a change of variable). The first version was proved for the Ising model by harvs|txt|first2=T. D.| last2=Lee|author2-link=T. D. Lee|first1=C. N. |last1=Yang|author1-link=C. N. Yang|year=1952, harv|Lee|Yang|1952. Their result was later extended to more general models by several people. harvtxt|Simon|Griffiths|1973 extended the Lee-Yang theorem to certain continuous probability distributions by approximating them by a superposition of Ising models. harvtxt|Newman|1974 gave a general theorem stating roughly that the Lee-Yang theorem holds for a ferromagnetic interaction provided it holds for zero interaction. harvtxt|Lieb|Sokal|1981 generalized Newman's result from measures on R to measures on higher-dimensional Euclidean space.

There has been some speculation about a relationship between the Lee-Yang theorem and the Riemann hypothesis about the Riemann zeta function; see harv|Knauf|1999.

tatement

The Hamiltonian is given by:H = -sum J_{jk}S_jS_k-sum z_jS_jand is said to be ferromagnetic if all the numbers "J"jk are non-negative reals.

The partition function is given by:Z = int e^{- H} dmu_1(S_1)cdots dmu_N(S_N)where each dμ"j" is an even measure on the reals R decreasing at infinity so fast thatall Gaussian functions are integrable.

A rapidly decreasing measure on the reals is said to have the Lee-Yang property if all zeros of its Fourier transform are real.

The Lee-Yang theorem states that if the Hamiltonian is ferromagnetic and all the measures dμ"j" have the Lee-Yang property, and all the numbers "z""j" have positive real part, then the partition function is non-zero. In particular if all the numbers "z""j" are equal to some number "z", then all zeros of the partition function (considered as a function of "z") are imaginary.

In the original Ising model case considered by Lee and Yang, the measures all have support on the 2 point set −1, 1, so the partition function can be considered a function of the variable ρ = "e"π"z". With this change of variable the Lee-Yang theorem says that all zeros ρ lie on the unit circle.

Examples

Some examples of measure with the Lee-Yang property are:
*The measure of the Ising model, which has support consisting of two points (usually 1 and −1) each with weight 1/2. This is the original case considered by Lee and Yang.
*The distribution of spin "n"/2, whose support has "n"+1 equally spaced points, each of weight 1/("n" + 1). This is a generalization of the Ising model case.
*The density of measure uniformly distributed between −1 and 1.
*The density exp(-lambdacosh(S)),dS
*The density exp(-lambda S^4-bS^2),dS for positive λ and real "b". This corresponds to the ("φ"4)2 Euclidean quantum field theory.
*The density exp(-lambda S^6- aS^4-bS^2),dS for positive λ does not always have the Lee-Yang property.
*If dμ has the Lee-Yang property, so does exp("bS"2) "dμ" for any positive "b".
*If "dμ" has the Lee-Yang property, so does "Q"("S") "dμ" for any even polynomial "Q" all of whose zeros are imaginary.
*The convolution of two measures with the Lee-Yang property also has the Lee-Yang property.

References

*Citation | last1=Itzykson | first1=Claude | last2=Drouffe | first2=Jean-Michel | title=Statistical field theory. Vol. 1 | publisher=Cambridge University Press | series=Cambridge Monographs on Mathematical Physics | isbn=978-0-521-34058-8; 978-0-521-40805-9 | id=MathSciNet | id = 1175176 | year=1989
*Citation | last1=Knauf | first1=Andreas | title=Number theory, dynamical systems and statistical mechanics | id=MathSciNet | id = 1714352 | year=1999 | journal=Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics | issn=0129-055X | volume=11 | issue=8 | pages=1027–1060|doi= 10.1142/S0129055X99000325
*Citation | last1=Lee | first1=T. D. | last2=Yang | first2=C. N. | title=Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model | url=http://link.aps.org/abstract/PR/v87/p410 | doi=10.1103/PhysRev.87.410 | year=1952 | journal=Physical Review Letters | issn=0031-9007 | volume=87 | pages=410–419
*Citation | last1=Lieb | first1=Elliott H. | last2=Sokal | first2=Alan D. | title=A general Lee-Yang theorem for one-component and multicomponent ferromagnets | id=MathSciNet | id = 623156 | year=1981 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=80 | issue=2 | pages=153–179|url=http://projecteuclid.org/euclid.cmp/1103919874
*Citation | last1=Newman | first1=Charles M. | title=Zeros of the partition function for generalized Ising systems | doi=10.1002/cpa.3160270203 | id=MathSciNet | id = 0484184 | year=1974 | journal=Communications on Pure and Applied Mathematics | issn=0010-3640 | volume=27 | pages=143–159
*Citation | last1=Simon | first1=Barry | author1-link=Barry Simon | last2=Griffiths | first2=Robert B. | title=The (φ4)2 field theory as a classical Ising model | url=http://projecteuclid.org/euclid.cmp/1103859251 | id=MathSciNet | id = 0428998 | year=1973 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=33 | pages=145–164
*Citation | last1=Yang | first1=C. N. | last2=Lee | first2=T. D. | title=Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation | url=http://link.aps.org/abstract/PR/v87/p404 | doi=10.1103/PhysRev.87.404 | year=1952 | journal=Physical Review Letters | issn=0031-9007 | volume=87 | pages=404–409


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Chen Ning Yang — This is a Chinese name; the family name is Yang (杨). Chen Ning Franklin Yang Born 1 October 1922 …   Wikipedia

  • Tsung-Dao Lee — Infobox Scientist box width = 300px name = Tsung Dao Lee |thumb|right|200px|Tsung Dao Lee caption = T.D. Lee birth date = Birth date and age|1926|11|24 birth place = Shanghai, China citizenship = United States field = Physics work institution =… …   Wikipedia

  • Physiknobelpreis 1957: Tsung Dao Lee — Chen Ning Yang —   Die Amerikaner chinesischer Herkunft erhielten den Nobelpreis für »ihre Forschungen über die Gesetze der Parität, die zu wichtigen Entdeckungen über die Elementarteilchen führten«.    Biografien   Tsung Dao Lee, * Schanghai 25. 11. 1926; seit… …   Universal-Lexikon

  • Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Liste von Physikern — Die Liste von Physikern ist alphabetisch sortiert und enthält nur Forscher, die wesentliche Beiträge zum Fachgebiet geleistet haben. Die Liste soll neben den Lebensdaten das Fachgebiet des Forschers nennen und wenige Stichworte zu den Aspekten… …   Deutsch Wikipedia

  • Density functional theory — Electronic structure methods Tight binding Nearly free electron model Hartree–Fock method Modern valence bond Generalized valence bond Møller–Plesset perturbation theory …   Wikipedia

  • Reinhard Oehme — (* 26. Januar 1928 in Wiesbaden; † zwischen dem 29. September und 4. Oktober 2010[1]) war ein deutsch amerikanischer theoretischer Physiker. Oehme war bekannt für die Entdeckung der Nicht Erhaltung der Ladungskonjugation im Zusammenhang mit… …   Deutsch Wikipedia

  • Wightman axioms — Quantum field theory (Feynman diagram) …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”