Hermitian connection

Hermitian connection

In mathematics, the Hermitian connection abla, also called the Chern connection, is the unique connection on a Hermitian manifold that satisfies the following conditions,
# It preserves the metric g, i.e., abla g=0.
# It preserves the complex structure J, i.e., abla J=0.
# The torsion is pure in its indices.If the Hermitian manifold admits a symplectic structure, i.e., if it is a Kähler manifold, then the Hermitian connection and the Levi-Civita connection coincide.

References

* Nakahara, Geometry, Topology, and Physics, Taylor & Francis.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Hermitian — A number of mathematical entities are named Hermitian, after the mathematician Charles Hermite:*Hermitian adjoint *Hermitian connection *Hermitian form *Hermitian function *Hermitian hat wavelet *Hermitian kernel *Hermitian manifold/structure… …   Wikipedia

  • Hermitian manifold — In mathematics, a Hermitian manifold is the complex analog of a Riemannian manifold. Specifically, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define …   Wikipedia

  • Connection form — In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan …   Wikipedia

  • Canonical connection — In mathematics, a canonical connection of a holomorphic vector bundle with a Hermitian structure, is the unique metric connection D, such that the part which increases the anti holomorphic type D annihilates holomorphic sections …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Photon polarization — is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. Individual photons are completely polarized. Their polarization state can be linear or circular, or it can be elliptical, which is anywhere in …   Wikipedia

  • Holonomy — Parallel transport on a sphere depends on the path. Transporting from A → N → B → A yields a vector different from the initial vector. This failure to return to the initial vector is measured by the holonomy of the connection. In differential… …   Wikipedia

  • Chern class — In mathematics, in particular in algebraic topology and differential geometry, the Chern classes are characteristic classes associated to complex vector bundles. Chern classes were introduced by Shiing Shen Chern (1946). Contents 1 Basic… …   Wikipedia

  • Hilbert–Pólya conjecture — In mathematics, the Hilbert–Pólya conjecture is a possible approach to the Riemann hypothesis, by means of spectral theory.Initial hunchesDavid Hilbert and George Pólya speculated that real number values of t such that : frac12 + it is a zero of… …   Wikipedia

  • Positive form — In complex geometry, the term positive form refers to several classes of real differential formsof Hodge type (p, p) . (1,1) forms Real ( p , p ) forms on a complex manifold M are forms which are of type ( p , p ) and real,that is, lie in the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”