The Beauty of Fractals

The Beauty of Fractals

Infobox Book
name = The Beauty of Fractals
title_orig =
translator =


image_caption = Cover
author = Heinz-Otto Peitgen, Peter Richter
illustrator =
cover_artist =
country =
language =
series =
subject = Fractals
genre =
publisher = Springer-Verlag, Heidelberg
release_date = 1986
english_release_date =
media_type =
pages =
isbn = ISBN 0-387-15851-0
preceded_by =
followed_by = The Science of Fractal Images

"The Beauty of Fractals" is a 1986 book by Heinz-Otto Peitgen and Peter Richter which publicises the fields of complex dynamics, chaos theory and the concept of fractals. It is lavishly illustrated and as a mathematics book became an unusual success.

The book includes a total of 184 illustrations, including 88 full-colour pictures of Julia sets. Although the format suggests a coffee-table book, the discussion of the background of the presented images addresses some sophisticated mathematics which would not be found in popular science books. In 1987 the book won an Award for distinguished technical communication.

Summary

The books starts with a general introduction to Complex Dynamics, Chaos and Fractals. In particular the Feigenbaum scenario and the relation to Julia Sets and the Mandelbrot set is discussed. The following special sections provide in depth detail for the shown

The book also includes invited Contributions by Benoît Mandelbrot, Adrien Douady, Gert Eilenberger and Herbert W. Franke, which provide additional formality and some historically interesting detail. Benoit Mandelbrot gives a very personal account of his discovery of fractals in general and the fractal named after him in particular. Adrien Douady explains the solved and unsolved problems relating to the almost amusingly complex Mandelbrot set.

The images

Part of the text was originally conceived as a supplemented catalogue to the exhibition Frontiers of Chaos of the German Goethe-Institut, first seen in Europe and the United States. It described the context and meaning of these images. The images were created at the "Computer Graphics Laboratory Dynamical Systems" at the University of Bremen in 1984 and 1985. Dedicated software had to be developed to make the necessary computations which at that time took hours of computer time to create a single image. For the exhibit and the book the computed images had to be captured as photographs. Digital image capturing and archiving were not feasible at that time.

The book was cited and its images were reproduced in a number of publications. [cite book |title= |last=Glieck |first=James |authorlink= |coauthors= |year=1987 |publisher=Cardinal |location=London |isbn= |pages=229 ] [Fractals: The Patterns of Chaos. John Briggs. 1992. p. 80.] [cite book|title=Does God Play Dice?|last=Stewart|first=Ian|year=1989|publisher=Penguin Books|isbn=0140125019|pages=236|quote=The best way to grasp the intricate and curious geometry of the [Mandelbrot set] 's structure is to beg, borrow, steal or (I recommend) buy "The Beauty of Fractals"] Some images were even used before the book was published. The cover article of the "Scientific American" August 1985 edition showed some the images and provided reference to the book to be published [cite book |title=A computer microscope zooms in for a close look at the most complicated object in mathematics |last=Dewdney |first=A.K. |authorlink= |coauthors= |year=Aug1985 |publisher=Scientific American |location= |pages=16–24 ] .

One particular image sequence of the book is the close up series "seahorse valley". While the first publication of such a close up series was the June 1984 cover article of the Magazine "Geo", [cite book |title=Matematik: Die unendliche Reise |last=Peitgen |first=Heinz-Otto |coauthors= Richter, Peter |year=June 1984 |publisher=Geo Verlag Gruner + Jahr AG |location=Hamburg |pages=100–124 ] "The Beauty of Fractals" provided the first such publication within a book.

Translations

* Italian translation: La Bellezza dei Frattali, Bollati Boringhieri, Torino 1987, ISBN 88-339-0420-2
* Japanese translation: Springer-Verlag, Tokyo 1988, ISBN 3-540-15851-0
* Russian translation: Krasota Fractalov, Mir, Moscow 1993, ISBN 5-03-001296-6
* Chinese translation: Z.-J. Jing and X.-S. Zhang, Science Publishers, Bejing 1994, ISBN 7-03-004188-7/TP 374

References

External links

* [http://www.cevis.uni-bremen.de/ Web page of the Center for Complex System and Visualization]
* [http://www.springer.com/math/book/978-3-540-15851-6 Web page of the book at Springer-Verlag]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Mathematical beauty — An example of beauty in method a simple and elegant geometrical proof that the Pythagorean theorem is true for a particular right angled triangle. Many mathematicians derive aesthetic pleasure from their work, and from mathematics in general.… …   Wikipedia

  • The DJ in the Mix — Infobox Album Name = The DJ in the Mix Type = compilation Artist = ATB Caption = In Love With The DJ/Sunset Girl single Released = 2003 Recorded = Unknown Genre = Dance Length = Label = Producer = ATB Reviews = Last album = This album = Next… …   Wikipedia

  • Examples of the motif of harmful sensation in fiction — This is a chronological list of examples of the motif of harmful sensation in modern fiction. Before 1901*In Stendhal s 1817 Naples and Florence: A Journey from Milan to Reggio , the eponymous Stendhal syndrome is outlined. *Edgar Allan Poe s… …   Wikipedia

  • Filled Julia set — The filled in Julia set K(f c) of a polynomial f c is defined as the set of all points z, of dynamical plane that have bounded orbit with respect to f c K(f c) overset{underset{mathrm{def{{=} { z in mathbb{C} : f^{(k)} c (z) ot o infty as k o… …   Wikipedia

  • Mandelbrot set — Initial image of a Mandelbrot set zoom sequence with a continuously coloured environment …   Wikipedia

  • Heinz-Otto Peitgen — (born April 30, 1945 in Bruch, Nümbrecht near Cologne) is a German mathematician. Peitgen is one of the most prominent researchers in the study of fractals. Life Peitgen studied mathematics, physics and economics from 1965 until 1971 in Bonn,… …   Wikipedia

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

  • Heinz-Otto Peitgen — (* 30. April 1945 in Nümbrecht Bruch) ist ein deutscher Mathematiker. Peitgen ist einer der populärsten deutschen Forscher auf dem Gebiet der Fraktale. Heinz Otto Peitgen Inhaltsverzeichnis …   Deutsch Wikipedia

  • Beauté mathématique — La frontière de l ensemble de Mandelbrot Certains mathématiciens recherchent dans leur travail ou dans les mathématiques en général, un plaisir esthétique. Ils expriment ce plaisir en décrivant de « belles » parties des mathématiques.… …   Wikipédia en Français

  • Ensemble de Mandelbrot — L ensemble de Mandelbrot (en noir) L ensemble de Mandelbrot est une fractale définie comme l ensemble des points c du plan complexe pour lesquels la suite définie par récurrence par  …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”