Rogers–Ramanujan identities

Rogers–Ramanujan identities

In mathematics, the Rogers–Ramanujan identities are a set of identities related to basic hypergeometric series. They were discovered by harvs|txt|first=Leonard James|last= Rogers|authorlink=Leonard James Rogers|year=1894 and subsequently rediscovered by harvs|txt|first=Srinivasa|last= Ramanujan|authorlink=Srinivasa Ramanujan|year=1913 as well as by harvs|txt|first=Issai |last=Schur|authorlink=Issai Schur|year=1917.

Definition

The Rogers–Ramanujan identities are

:sum_{n=0}^infty frac {q^{n^2 {(q;q)_n} = frac {1}{(q;q^5)_infty (q^4; q^5)_infty}

and

:sum_{n=0}^infty frac {q^{n^2+n {(q;q)_n} = frac {1}{(q^2;q^5)_infty (q^3; q^5)_infty}.

Here, (a;q)_infty denotes the infinite q-Pochhammer symbol.

References

*
* Issai Schur, "Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche", (1917) Sitzungsberichte der Berliner Akademie, pp. 302–321.
* W.N. Bailey, "Generalized Hypergeometric Series", (1935) Cambridge Tracts in Mathematics and Mathematical Physics, No.32, Cambridge University Press, Cambridge.
* George Gasper and Mizan Rahman, "Basic Hypergeometric Series, 2nd Edition", (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. ISBN 0-521-83357-4.
* Bruce C. Berndt, Heng Huat Chan,, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, Seung Hwan Son, " [http://www.math.uiuc.edu/~berndt/articles/rrcf.pdf The Rogers-Ramanujan Continued Fraction] ", J. Comput. Appl. Math. 105 (1999), pp. 9–24.
* Cilanne Boulet, Igor Pak, " [http://www-math.mit.edu/~pak/rogers14.pdf A Combinatorial Proof of the Rogers-Ramanujan and Schur Identities] ", Journal of Combinatorial Theory, Ser. A, vol. 113 (2006), 1019–1030.
*Citation | last1=Slater | first1=L. J. | title=Further identies of the Rogers-Ramanujan type | doi=10.1112/plms/s2-54.2.147 | id=MathSciNet | id = 0049225 | year=1952 | journal=Proceedings of the London Mathematical Society. Second Series | issn=0024-6115 | volume=54 | pages=147–167


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Rogers polynomials — Not to be confused with Rogers–Szegő polynomials. In mathematics, the Rogers polynomials, also called Rogers–Askey–Ismail polynomials and continuous q ultraspherical polynomials, are a family of orthogonal polynomials introduced by… …   Wikipedia

  • Srinivasa Ramanujan — Infobox Scientist name=Srinivasa Ramanujan thumb|Srinivasa Ramanujan birth date = birth date|1887|12|22|df=y birth place = Erode, Tamil Nadu, India death date = death date and age|1920|4|26|1887|12|22|df=y death place = Chetput, (Madras), Tamil… …   Wikipedia

  • Leonard James Rogers — (30 March 1862 in Oxford, England, ndash; 12 September 1933 in Oxford, England) was a British mathematician who was the first to discover the Rogers Ramanujan identity and Hölder s inequality.From 1888 to 1919 he was Professor of Mathematics at… …   Wikipedia

  • Bailey pair — In mathematics, a Bailey pair is a pair of sequences satisfying certain relations, and a Bailey chain is a sequence of Bailey pairs. Bailey pairs were introduced by harvs|txt|first=W. N. |last=Bailey|authorlink=Wilfrid Norman… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Kac–Moody algebra — In mathematics, a Kac–Moody algebra is a Lie algebra, usually infinite dimensional, that can be defined by generators and relations through a generalized Cartan matrix. Kac–Moody algebras are named after Victor Kac and Robert Moody, who… …   Wikipedia

  • Fibonacci Quarterly — The Fibonacci Quarterly (sometimes Fib. Quart. in bibliographies) is the official publication of the Fibonacci Association, intended to serve as a focal point for interest in Fibonacci numbers and related questions, especially with respect to new …   Wikipedia

  • Lucy Joan Slater — is a mathematician who works on hypergeometric functions who found many generalizations of the Rogers–Ramanujan identities.Publications*AS ref |13 Confluent hypergeometric functions|503 *Citation | last1=Slater | first1=Lucy Joan |… …   Wikipedia

  • Square root of 5 — The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. This number appears in the formula for the golden ratio. It can be denoted in surd form as::sqrt{5}.It is an irrational algebraic number.… …   Wikipedia

  • Sander Zwegers — Sander Pieter Zwegers (* 16. April 1975 in Oosterhout) ist ein niederländischer Mathematiker, der sich mit Modulformen beschäftigt. Zwegers wuchs in s´Gravenmoer auf und studierte an der Universität Utrecht, wo er nach dem Diplom bei J. A. C.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”