Gauss's lemma (number theory) — This article is about Gauss s lemma in number theory. Gauss s lemma (polynomial) concerns factoring polynomials. Gauss s lemma in number theory gives a condition for an integer to be a quadratic residue. Although it is not useful computationally … Wikipedia
Gauss's lemma (polynomial) — This article is about Gauss s lemma for polynomials. See also Gauss s lemma. In algebra, in the theory of polynomials, Gauss s lemma, named after Carl Friedrich Gauss, is either of two related statements about polynomials with integral… … Wikipedia
Gauss's lemma (Riemannian geometry) — In Riemannian geometry, Gauss s lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its… … Wikipedia
Lemma (mathematics) — In mathematics, a lemma (plural lemmata or lemmascite book |last= Higham |first= Nicholas J. |title= Handbook of Writing for the Mathematical Sciences |publisher= Society for Industrial and Applied Mathematics |year= 1998 |isbn= 0898714206 |pages … Wikipedia
Zolotarev's lemma — In mathematics, Zolotarev s lemma in number theory states that the Legendre symbol:left(frac{a}{p} ight) for an integer a modulo a prime number p , can be computed as: epsilon;( pi; a )where ε denotes the signature of a permutation and π a the… … Wikipedia
List of topics named after Carl Friedrich Gauss — Carl Friedrich Gauss (1777 ndash; 1855) is the eponym of all of the topics listed below. Topics including Gauss *Carl Friedrich Gauss Prize, a mathematics award *Degaussing, to demagnetize an object *Gauss (unit), a unit of magnetic field (B)… … Wikipedia
Lemme de Gauss (théorie des nombres) — Pour les articles homonymes, voir Théorème de Gauss. Le lemme de Gauss en théorie des nombres donne une condition pour qu un entier soit un résidu quadratique. Il a été introduit et démontré par Gauss dans ses preuves de la loi de réciprocité… … Wikipédia en Français
Lemme de Gauss (géométrie Riemannienne) — Dans la géométrie Riemannienne, le lemme de Gauss permet de comprendre l application exponentielle comme une isométrie radiale. Dans ce qui suit, soit M une variété de Riemann dotée d une connexion de Levi Civita (i.e. en particulier, cette… … Wikipédia en Français
Lemme de Gauss (géométrie riemannienne) — En géométrie riemannienne, le lemme de Gauss permet de comprendre l application exponentielle comme une isométrie radiale. Dans ce qui suit, soit M une variété riemannienne dotée d une connexion de Levi Civita (i.e. en particulier, cette… … Wikipédia en Français
Carl-Friedrich Gauss — Carl Friedrich Gauß Johann Carl Friedrich Gauß (latinisiert Carolus Fridericus Gauss; * 30. April 1777 in Braunschweig; † 23. Februar 1855 in Göttingen) war ein deutscher Mathematiker, Astronom, Geodät und Physiker … Deutsch Wikipedia