Chebyshev–Gauss quadrature

Chebyshev–Gauss quadrature

In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

\int_{-1}^{+1} \frac {f(x)} {\sqrt{1 - x^2} }\,dx

and

\int_{-1}^{+1} \sqrt{1 - x^2} g(x)\,dx.

In the first case

\int_{-1}^{+1} \frac {f(x)} {\sqrt{1-x^2} }\,dx \approx \sum_{i=1}^n w_i f(x_i)

where

x_i = \cos \left( \frac {2i-1} {2n} \pi \right)

and the weight

w_i = \frac {\pi} {n}.[1]

In the second case

\int_{-1}^{+1} \sqrt{1-x^2} g(x)\,dx \approx \sum_{i=1}^n w_i g(x_i)

where

x_i = \cos \left( \frac {i} {n+1} \pi \right)

and the weight

 w_i = \frac {\pi} {n+1} \sin^2 \left( \frac {i} {n+1} \pi \right). \,[2]

See also

References

  1. ^ Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN 978-0-486-61272-0. Equation 25.4.38.
  2. ^ Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN 978-0-486-61272-0. Equation 25.4.40.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Chebyshev pseudospectral method — The Chebyshev pseudospectral method for optimal control problems is based on Chebyshev polynomials of the first kind. Unlike the Legendre pseudospectral method, the Chebyshev pseudospectral (PS) method does not immediately offer high accuracy… …   Wikipedia

  • Chebyshev polynomials — Not to be confused with discrete Chebyshev polynomials. In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre s formula and which can be defined… …   Wikipedia

  • Gauss pseudospectral method — The Gauss Pseudospectral Method (abbreviated GPM ) is a direct transcription method for discretizing a continuous optimal control problem into a nonlinear program (NLP). The Gauss pseudospectral method differs from several other pseudospectral… …   Wikipedia

  • Méthodes de quadrature de Gauss — Dans le domaine mathématique de l analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d une intégrale. En général, on remplace le calcul de l intégrale par une somme pondérée prise en un certain nombre de… …   Wikipédia en Français

  • Gauss–Newton algorithm — The Gauss–Newton algorithm is a method used to solve non linear least squares problems. It can be seen as a modification of Newton s method for finding a minimum of a function. Unlike Newton s method, the Gauss–Newton algorithm can only be used… …   Wikipedia

  • Clenshaw–Curtis quadrature — and Fejér quadrature are methods for numerical integration, or quadrature , that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables x = cos θ and use a discrete… …   Wikipedia

  • Gaussian quadrature — In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration.(See numerical integration for more on… …   Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Pseudospectral optimal control — Pseudospectral (PS) optimal control is a computational method for solving optimal control problems. PS optimal controllers have beenextensively used to solve a wide range of problems such as those arising in UAV trajectory generation, missile… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”