Shapiro's lemma

Shapiro's lemma

In mathematics, especially in the areas of abstract algebra dealing with group cohomology or relative homological algebra, Shapiro's lemma, also known as the Eckmann–Shapiro lemma, relates extensions of modules over one ring to extensions over another, especially the group ring of a group and of a subgroup. It thus relates the group cohomology with respect to a group to the cohomology with respect to a subgroup.

Statement for rings

Let "R" → "S" be a ring homomorphism, so that "S" becomes a left and right "R"-module. Let "M" be a left "S"-module and "N" a left "R"-module. By restriction of scalars, "M" is also a left "R"-module.
* If "S" is projective as a right "R"-module, then::operatorname{Ext}^n_R(N, {}_R M) cong operatorname{Ext}^n_S(S otimes_R N, M)
* If "S" is projective as a left "R"-module, then::operatorname{Ext}^n_R({}_R M,N) cong operatorname{Ext}^n_S(M,operatorname{Hom}_R(S,N))

See .

References

* | year=1991 | volume=30
* Neukirch, Schmidt, Wingberg: "Cohomology of Number Fields", page 59.
* | year=1994


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • Charles Sanders Peirce bibliography — C. S. Peirce articles  General:    Charles Sanders Peirce Charles Sanders Peirce bibliography Philosophical:    Categories (Peirce) Semiotic elements and   classes of signs (Peirce) Pragmatic maxim • Pragmaticism… …   Wikipedia

  • List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia

  • Loop theorem — In the topology of 3 manifolds, the loop theorem is a generalization of Dehn s lemma. The loop theorem was first proven by Christos Papakyriakopoulos in 1956, along with Dehn s lemma and the sphere theorem.A simple and useful version of the loop… …   Wikipedia

  • Ahoi — ist ein Signalwort, um ein Schiff oder Boot anzurufen, und entstammt der deutschen Seemannssprache. Der Ruf galt als veraltet, ist aber mit zunehmender Beliebtheit des Segelsports wieder gebräuchlicher geworden. In Nebenbedeutungen dient ahoi als …   Deutsch Wikipedia

  • Ahoi! — Ahoi ist ein Signalwort, um ein Schiff oder Boot anzurufen, und entstammt der deutschen Seemannssprache. Der Ruf galt als veraltet, ist aber mit zunehmender Beliebtheit des Segelsports wieder gebräuchlicher geworden. In Nebenbedeutungen dient… …   Deutsch Wikipedia

  • ahoi — (gesprochen [aˈhɔi̯]) ist ein Signalwort, um ein Schiff oder Boot anzurufen, und entstammt der deutschen Seemannssprache. Der Ruf galt als veraltet, ist aber mit zunehmender Beliebtheit des Segelsports wieder gebräuchlicher geworden. In… …   Deutsch Wikipedia

  • Alternative hypothesis — Main article: Statistical hypothesis testing In statistical hypothesis testing, the alternative hypothesis (or maintained hypothesis or research hypothesis) and the null hypothesis are the two rival hypotheses which are compared by a statistical… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”