Lovász local lemma

Lovász local lemma

In probability theory, if a large number of events are all independent of one another, then there is a positive (possibly small) probability that none of the events will occur. The Lovász local lemma (proved in 1975 by László Lovász and Paul Erdős) allows one to relax the independence condition slightly: As long as the events are "mostly" independent from one another and aren't individually too likely, then there will still be a positive probability that none of them occurs. It is most commonly used in the probabilistic method, in particular to give existence proofs.

There are several different versions of the lemma. The simplest and most frequently used is the symmetric version given below. For other versions, see Alon and Spencer (2000).

tatement of the Lemma (symmetric version)

Let "A1, A2,..., Ak" be a series of events such that each event occurs with probability at most "p" and such that each event is independent of all the other events except for at most "d" of them.

If

:e p (d+1) le 1

(where e =2.718...), then there is a nonzero probability that none of the events occur.

Note that, as is often the case with probabilistic arguments, this theorem is nonconstructive and gives no method of determining an explicit element of the probability space in which no event occurs. However, algorithmic versions of the local lemma with stronger preconditions are also known (Beck 1991; Czumaj and Scheideler 2000).

Example

Suppose "11n" points are placed around a circle and colored with "n" different colors, 11 points colored with each color. Then there must be a set of "n" points containing 1 point of each color but not containing any pair of adjacent points.

To see this, imagine picking a point of each color randomly, with all points equally likely (i.e. probability '1/11') to be chosen. The "11n" different events we want to avoid correspond to the "11n" pairs of adjacent points on the circle. For each pair our odds of picking both points in that pair is at most 1/121 (exactly 1/121 if the two points are of different colors, otherwise 0). This will be our "p".

Whether a given pair "(a,b)" of points is chosen depends only on what happens in the colors of "a" and "b", and not all on whether any other collection of points in the other "n-2" colors are chosen. This implies the event "a" and "b" are both chosen" is dependent only on those pairs of adjacent points which share a color either with "a" or with "b".

There are 11 points on the circle sharing a color with "a" (including "a" itself), each of which is involved with 2 pairs. This means there are 21 pairs other than "(a,b)" which include the same color as "a", and the same holds true for "b". The worst that can happen is that these two sets are disjoint, so we can take "d=42" in the lemma. This gives

ep(d+1)=0.966<1.

By the local lemma, there is a positive probability that none of the bad events occur, meaning that our set contains no pair of adjacent points. This implies that a set satisfying our conditions must exist.

References

*cite book
author = Alon, Noga; Spencer, Joel H.
year = 2000
title = The probabilistic method
edition = 2nd ed.
location = New York
publisher = Wiley-Interscience
id = ISBN 0-471-37046-0

*cite journal
author = Beck, J.
title = An algorithmic approach to the Lovász local lemma, I
journal = Random Structures and Algorithms
volume = 2
issue = 4
pages = 343–365
year = 1991

*cite journal
title = Coloring nonuniform hypergraphs: A new algorithmic approach to the general Lovász local lemma
author = Czumaj, Artur; Scheideler, Christian
journal = Random Structures & Algorithms
year = 2000
volume = 17
issue = 3–4
pages = 213–237
doi = 10.1002/1098-2418(200010/12)17:3/4<213::AID-RSA3>3.0.CO;2-Y

*cite conference
author = Erdős, Paul; Lovász, László
title = Problems and results on 3-chromatic hypergraphs and some related questions
editor = A. Hajnal, R. Rado, and V. T. Sós, eds.
booktitle = Infinite and Finite Sets (to Paul Erdős on his 60th birthday)
volume = II
pages = 609–627
publisher = North-Holland
date = 1975
url = http://www.cs.elte.hu/~lovasz/scans/LocalLem.pdf

External links

* [http://research.microsoft.com/research/theory/jehkim/Lectures/ProbCombi/Chap5_5.pdf Lecture Notes on the Local Lemma] , by Jeong Han Kim


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Lovász-Local-Lemma — Das Lovász Local Lemma ist ein Hilfssatz aus der Wahrscheinlichkeitstheorie. Es verallgemeinert das Argument, dass die stochastische Unabhängigkeit von Ereignissen mit positiver Ausfallwahrscheinlichkeit eine positive Wahrscheinlichkeit für den… …   Deutsch Wikipedia

  • Lovász Local Lemma — Das Lovász Local Lemma ist ein Hilfssatz aus der Wahrscheinlichkeitstheorie. Es verallgemeinert das Argument, dass die stochastische Unabhängigkeit von Ereignissen mit positiver Ausfallwahrscheinlichkeit eine positive Wahrscheinlichkeit für den… …   Deutsch Wikipedia

  • Lovász — ist der Familienname folgender Personen: Irén Lovász, ungarische Folk Sängerin László Lovász (* 1948), ungarischer Mathematiker Lázár Lovász (* 1942), ungarischer Hammerwerfer Zsuzsa Lovász (* 1976), ungarischer Handballspieler Lovász steht… …   Deutsch Wikipedia

  • Laszlo Lovasz — László Lovász. László Lovász (* 9. März 1948 in Budapest) ist ein ungarisch amerikanischer Mathematiker, der vor allem für seine Arbeiten auf dem Gebiet der Kombinatorik und Graphentheorie bekannt ist. Inhaltsverzeichnis …   Deutsch Wikipedia

  • László Lovász — Infobox Scientist name = László Lovász caption = László Lovász speaking in 2007 at the EPFL birth date = Birth date and age|1948|3|9|mf=y birth place = Budapest, Hungary residence = Budapest, Hungary nationality = Hungarian, American ethnicity =… …   Wikipedia

  • László Lovász — (* 9. März 1948 in Budapest) ist ein ungarischer Mathematiker, der vor allem für seine Arbeiten auf dem Gebiet der Kombinatorik und Graphentheorie bekannt ist …   Deutsch Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • Liste mathematischer Sätze — Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Satz von Abel Ruffini: eine allgemeine Polynomgleichung vom …   Deutsch Wikipedia

  • Combinatoire probabiliste — Méthode probabiliste Cet article n est pas sur les systèmes de preuve interactive qui sont utilisés pour convaincre un vérificateur qu une démonstration est correcte, ni sur les algorithmes probabilistes, qui donnent la bonne réponse avec une… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”