- Hydromechanics
**Hydromechanics**(Gr. "ubpops avuca") is the science of the mechanics of water and fluids in general, includinghydrostatics or the mathematical theory of fluids in equilibrium, and hydrodynamics, the theory of fluids in motion. The practical application of hydromechanics forms the province ofhydraulics .**Historical**The fundamental principles of hydrostatics were first given by

Archimedes in his work "IIepi r%uv oxouuiewv", or "De its quae vehuntur in humido", about250 BC , and were afterwards applied to experiments byMarin Getaldić (1566-1627) in his "Promotus Archimedes" (1603). Archimedes maintained that each particle of a fluid mass, when in equilibrium, is equally pressed in every direction ; and he inquired into the conditions according to which a solid body floating in a fluid should assume and preserve a position of equilibrium.In the Greek school at

Alexandria , which flourished under the auspices of the Ptolemies, the first attempts were made at the construction of hydraulic machinery, and about120 BC the fountain of compression, thesiphon , and theforcing-pump were invented byCtesibius and Hero. The siphon is a simple instrument; but the forcing-pump is a complicated invention, which could scarcely have been expected in the infancy of hydraulics. It was probably suggested to Ctesibius by theEgyptian Wheel orNoria , which was common at that time, and which was a kind of chain pump, consisting of a number of earthen pots carried round by a wheel. In some of these machines the pots have a valve in the bottom which enables them to descend without much resistance, and diminishes greatly the load upon the wheel; and, if we suppose that this valve was introduced so early as the time of Ctesibius, it is not difficult to perceive how such a machine might have led to the invention of the forcing-pump.Notwithstanding these inventions of the Alexandrian school, its attention does not seem to have been directed to the motion of fluids; and the first attempt to investigate this subject was made by

Sextus Julius Frontinus , inspector of the public fountains at Rome in the reigns ofNerva andTrajan . In his work "De aquaeductibus urbis Romae commentaries", he considers the methods which were at that time employed for ascertaining the quantity of water discharged fromajutage s, and the mode of distributing the waters of an aqueduct or a fountain. He remarked that the flow of water from an orifice depends not only on the magnitude of the orifice itself, but also on the height of the water in the reservoir; and that a pipe employed to carry off a portion of water from an aqueduct should, as circumstances required, have a position more or less inclined to the original direction of the current. But as he was unacquainted with the law of the velocities of running water as depending upon the depth of the orifice, the want of precision which appears in his results is not surprising.Benedetto Castelli , andEvangelista Torricelli , two of the disciples ofGalileo , applied the discoveries of their master to the science of hydrodynamics. In1628 Castelli published a small work, "Della misura dell' acque correnti", in which he satisfactorily explained several phenomena in the motion of fluids in rivers andcanal s; but he committed a greatparalogism in supposing the velocity of the water proportional to the depth of the orifice below the surface of the vessel. Torricelli, observing that in a jet where the water rushed through a small ajutage it rose to nearly the same height with the reservoir from which it was supplied, imagined that it ought to move with the same velocity as if it had fallen through that height by the force of gravity, and hence he deduced the proposition that the velocities of liquids are as the square root of the head, apart from the resistance of the air and the friction of the orifice. This theorem was published in1643 , at the end of his treatise "De motu gravium projectorum", and it was con-firmed by the experiments ofRaffaello Magiotti on the quantities of water discharged from different ajutages under different pressures (1648).In the hands of

Blaise Pascal hydrostatics assumed the dignity of a science, and in a treatise on the equilibrium of liquids ("Sur l'equilibre des liqueurs"), found among his manuscripts after his death and published in 1663, the laws of the equilibrium of liquids were demonstrated in the most simple manner, and amply confirmed by experiments.The theorem of Torricelli was employed by many succeeding writers, but particularly by

Edme Mariotte (1620-1684), whose "Traité du mouvement des eaux", published after his death in the year 1686, is founded on a great variety of well-conducted experiments on the motion of fluids, performed atVersailles andChantilly . In the discussion of some points he committed considerable mistakes. Others he treated very superficially, and in none of his experiments apparently did he attend to the diminution of efflux arising from the contraction of the liquid vein, when the orifice is merely a perforation in a thin plate; but he appears to have been the first who attempted to ascribe the discrepancy between theory and experiment to the retardation of the water's velocity through friction. His contemporaryDomenico Guglielmini (1655-1710), who was inspector of the rivers and canals atBologna , had ascribed this diminution of velocity in rivers to transverse motions arising front inequalities in their bottom. But as Mariotte observed similar obstructions even in glass pipes where no transverse currents could exist, the cause assigned by Guglielmini seemed destitute of foundation. The French philosopher, therefore, regarded these obstructions as the effects of friction. He supposed that the filaments of water which graze along the sides of the pipe lose a portion of their velocity; that the contiguous filaments, having on this account a greater velocity, rub upon the former, and suffer a diminution of their celerity; and that the other filaments are affected with similar retardations proportional to their distance from the axis of the pipe. In this way the medium velocity of the current may be diminished, and consequently the quantity of water discharged in a given time must, from the effects of friction, be considerably less than that which is computed from theory.The effects of friction and viscosity in diminishing the velocity of running water were noticed in the "Principia" of

Sir Isaac Newton , who threw much light upon several branches of hydromechanics. At a time when theCartesian system of vortices universally prevailed, he found it necessary to investigate that hypothesis, and in the course of his investigations he showed that the velocity of any stratum of the vortex is an arithmetical mean between the velocities of the strata which enclose it; and from this it evidently follows that the velocity of a filament of water moving in a pipe is an arithmetical mean between the velocities of the filaments which surround it. Taking advantage of these results, Italian-born French engineerHenri Pitot afterwards showed that the retardations arising from friction are inversely as the diameters of the pipes in which the fluid moves.The attention of Newton was also directed to the discharge of water from orifices in the bottom of vessels. He supposed a cylindrical vessel full of water to be perforated in its bottom with a small hole by which the water escaped, and the vessel to be supplied with water in such a manner that it always remained full at the same height. He then supposed this cylindrical column of water to be divided into two parts,the first, which he called the "cataract," being an hyperboloid generated by the revolution of an

hyperbola of the fifth degree around the axis of the cylinder which should pass through the orifice, and the second the remainder of the water in the cylindrical vessel. He considered the horizontal strata of this hyperboloid as always in motion, while the remainder of the water was in a state of rest, and imagined that there was a kind of cataract in the middle of the fluid.When the results of this theory were compared with the quantity of water actually discharged, Newton concluded that the velocity with which the water issued from the orifice was equal to that which a falling body would receive by descending through half the height of water in the reservoir. This conclusion, however, is absolutely irreconcilable with the known fact that jets of water rise nearly to the same height as their reservoirs, and Newton seems to have been aware of this objection. Accordingly, in the second edition of his "Principia", which appeared in 1713, he reconsidered his theory. He had discovered a contraction in the vein of fluid ("vena contracta") which issued from the orifice, and found that, at the distance of about a diameter of the aperture, the section of the vein was contracted in the subduplicate ratio of two to one. He regarded, therefore, the section of the contracted vein as the true orifice from which the discharge of water ought to be deduced, and the velocity of the effluent water as due to the whole height of water in the reservoir; and by this means his theory became more conformable to the results of experience, though still open to serious objections. Newton was also the first to investigate the difficult subject of the motion of

waves .In

1738 Daniel Bernoulli published his "Hydrodynamica seu de viribus et motibus fluidorum commentarii". His theory of the motion of fluids, the germ of which was first published in his memoir entitled "Theoria nova de motu aquarum per canales quocunque fluentes", communicated to the Academy of St Petersburg as early as 1726, was founded on two suppositions, which appeared to him conformable to experience. He supposed that the surface of the fluid, contained in a vessel which is emptying itself by an orifice, remains always horizontal; and, if the fluid mass is conceived to be divided into an infinite number of horizontal strata of the same bulk, that these strata remain contiguous to each other, and that all their points descend vertically, with velocities inversely proportional to their breadth, or to the horizontal sections of the reservoir. In order to determine the motion of each stratum, he employed the principle of the "conservatio virium vivarum", and obtained very elegant solutions. But in the absence of a general demonstration of that principle, his results did not command the .confidence which they would otherwise have deserved, and it became desirable to have a theory more certain, and depending-solely on the fundamental laws of mechanics.Colin Maclaurin andJohn Bernoulli , who were of this opinion, resolved the problem by more direct methods, the one in his "Fluxions", published in 1742, and the other in his "Hydraulica nunc primum detecta, et demonstrata directe ex furulamentis pure mechanicis", which forms the fourth volume of his works. The method employed by Maclaurin has been thought not sufficiently rigorous; and that of John Bernoulli is, in the opinion of Lagrange, defective in clearness and precision.The theory of Daniel Bernoulli was opposed also by

Jean le Rond d'Alembert . When generalizing the theory of pendulums ofJacob Bernoulli he discovered a principle of dynamics so simple and general that it reduced the laws of the motions of bodies to that of their equilibrium. He applied this principle to the motion of fluids, and gave a specimen of its application at the end of his "Dynamics" in 1743. It was more fully developed in his "Traité des fluides", published in 1744, in which he gave simple and elegant solutions of problems relating to the equilibrium and motion of fluids. He made use of the same suppositions as Daniel Bernoulli, though his calculus was established in a very different manner. He considered, at every instant, the actual motion of a stratum as composed of a motion which it had in the preceding instant and of a motion which it had lost; and the laws of equilibrium between the motions lost furnished him with equations re-presenting the motion of the fluid. It remained a desideratum to express by equations the motion of a particle of the fluid in any assigned direction. These equations were found by d'Alembert from two principles--that a rectangular canal, taken in a mass of fluid in equilibrium, is itself in equilibrium, and that a portion of the fluid, in passing from one place to another, preserves the same volume when the fluid is incompressible, or dilates itself according to a given law when the fluid is elastic. His ingenious method, published in1752 , in his "Essai sur la resistance des fluides", was brought to perfection in his "Opuscules mathematiques", and was adopted byLeonhard Euler .The resolution of the questions concerning the motion of fluids was effected by means of Euler's partial differential coefficients. This calculus was first applied to the motion of water by d'Alembert, and enabled both him and Euler to represent the theory of fluids in formulae restricted by no particular hypothesis.

One of the most successful labourers in the science of hydrodynamics at this period was

Pierre Louis Georges Dubuat (1734-1809). Following in the steps of the Abbé Charles Bossut ("Nouvelles Experiences sur la resistance des fluides", 1777), he published, in 1786, a revised edition of his "Principes d'hydraulique", which contains a satisfactory theory of the motion of fluids, founded solely upon experiments. Dubuat considered that if water were a perfect fluid, and the channels in which it flowed infinitely smooth, its motion would be continually accelerated, like that of bodies descending in an inclined plane. But as the motion of rivers is not continually accelerated,and soon arrives at a state of uniformity, it is evident that the viscosity of the water, and the friction of the channel in which it descends, must equal tke accelerating force. Dubuat, therefore, assumed it as a proposition of fundamental importance that, when water flows in any channel or bed, the accelerating force which obliges it to move is equal to the sum of all the resistances which it meets with, whether they arise from its ownviscosity or from the friction of its bed. This principle was employed by him in the first edition of his work, which appeared in 1779. The theory contained in that edition was founded on the experiments of others, but he soon saw that a theory so new, and leading to results so different from the ordinary theory, should be founded on new experiments more direct than the former, and he was employed in the performance of these from 1780 to 1783. The experiments of Bossut were made only on pipes of a moderate declivity, but Dubuat used declivities of every kind, and made his experiments upon channels of various sizes.The theory of running water was greatly advanced by the researches of

Gaspard Riche de Prony (1755-1839). From a collection of the best experiments by previous workers he selected eighty-two (fifty-one on the velocity of water in conduit pipes, and thirty-one on its velocity in open canals); and, discussing these on physical and mechanical principles, he succeeded in drawing up general formulae, which afforded a simple expression for the velocity of running water.JA Eytelwein of

Berlin , who published in1801 a valuable compendium of hydraulics entitled "Handbuch der Mechanik und der Hydraulik", investigated the subject of the discharge of water by compound pipes, the motions of jets and their impulses against plane and oblique surfaces; and he showed theoretically that a water-wheel will have its maximum effect when its circumference moves with half the velocity of the stream.JNP Hachette in 1816-1817 published memoirs containing the results of experiments on the spouting of fluids and the discharge of vessels. His object was to measure the contracted part of a fluid vein, to examine the phenomena attendant on additional tubes, and to investigate the form of the fluid vein and the results obtained when different forms of orifices are employed. Extensive experiments on the discharge of water from orifices ("Experiences hydrauliques", Paris, 1832) were conducted under the direction of the French government by JV Poncelet (1788-1867) and JA Lesbros (1790-1860). PP Boileau (1811-1891) discussed their results and added experiments of his own ("Traité de la mesure des eaux courantes", Paris, 1854). KR Bornemann re-examined all these results with great care, and gave formulae expressing the variation of the coefficients of discharge in different conditions ("Civil Ingenieur," 1880).

Julius Weisbach (1806-1871) also made many experimental investigations on the discharge of fluids. The experiments of JB Francis ("Lowell Hydraulic Experiments", Boston, Mass., 1855) led him to propose variations in the accepted formulae for the discharge over weirs, and a generation later a very complete investigation of this subject was carried out by H Bazin. An elaborate inquiry on the flow of water in pipes and channels was conducted by HGP Darcy (1803-1858) and continued by H Bazin, at the expense of the French government ("Recherches hydrauliques", Paris, 1866).German engineers have also devoted special attention to the measurement of the flow in rivers; the "Beiträge zur Hydrographie des Königreiches Bohmen" (Prague, 1872-1875) of AR Harlacher contained valuable measurements of this kind, together with a comparison of the experimental results with the formulae of flow that had been proposed up to the date of its publication, and important data were yielded by the gaugings of the

Mississippi made for the United States government by AA Humphreys and HL Abbot, byRobert Gordon 's gaugings of theAyeyarwady River , and by Allen JC Cunningham's experiments on theGanges canal. The friction of water, investigated for slow speeds by Coulomb, was measured for higher speeds byWilliam Froude (1810-1879), whose work is of great value in the theory of ship resistance ("Brit. Assoc. Report.", 1869), and stream line motion was studied by Professor Osborne Reynolds and by Professor HS Hele-Shaw.----

*Wikimedia Foundation.
2010.*