- Intensive farming
Intensive farming or intensive agriculture is an
agricultural production system characterized by the highinput s ofcapital ,fertilizers , labour, or labour-saving technologies such aspesticides relative to land area. [http://www.britannica.com/eb/article-9042533 Encyclopaedia Britannica's definition of Intensive Agriculture] ] [http://www.bbc.co.uk/schools/gcsebitesize/biology/livingthingsenvironment/4foodandsustainabilityrev5.shtml BBC School fact sheet on intensive farming] ] This is in contrast to the concept ofExtensive Agriculture which involves a low input of materials and labour with thecrop yield depending largely on the naturally availablesoil fertility ,water supply or other land qualities. [http://www.britannica.com/eb/article-9033457 Encyclopaedia Britannica's definition of Extensive Agriculture] ]Modern day forms of intensive crop based agriculture involve the use of mechanical ploughing, chemical
fertilizer s,herbicide s,fungicide s,insecticide s, plant growth regulators and/orpesticide s. It is associated with the increasing use of agricultural mechanization, which have enabled a substantial increase in production. Intensive animal farming practices can involve very large numbers of animals raised on limited land which require large amounts of food, water and medical inputs (required to keep the animals healthy in cramped conditions). Very large or confined indoor intensive livestock operations (particularly descriptive of common US farming practices) are often referred to asFactory farming [ [http://dictionary.reference.com/browse/Factory%20farming Factory farming. Webster's Dictionary definition of Factory farming] ] [http://www.britannica.com/ebc/article-9364147 Encyclopaedia Britannica's definition of Factory farm] ] and are criticised by opponents for the low level of animal welfare standards [http://ec.europa.eu/food/fs/sc/oldcomm4/out17_en.html The Welfare of Intensively Kept Pigs] ] and associated pollution and health issues. [ [http://www.cbc.ca/news/story/2000/07/28/000727farming.html Commissioner points to factory farming as source of contamination] ] [http://www.environment-agency.gov.uk/commondata/105385/rebuildag_908097.pdf Rebuilding Agriculture - EPA of UK] ]Advantages
Intensive agriculture has a number of benefits [http://www.britannica.com/eb/article-9042533/intensive-agriculture Encyclopaedia Britannica - Intensive Agriculture] ] :
* Significantly increased yield per available space than extensive farming.
* Often leads to cheaper priced products because of better general production rate for the cost of raw materials.
* Not much space for the animal(s) to move therefore less energy used up; so less food supplied to the cattle, which leads to cheaper products.
* Many people feel it's necessary to use intensive farming for better profits and economyFact|date=July 2008Disadvantages
Intensive farming alters the environment in many ways.
* Limits the natural habitat of some wild creatures and can lead to soil erosion.
* Use offertilizers can alter the biology ofrivers andlakes . Some environmentalists attribute the hypoxic zone in the Gulf of Mexico as being encouraged by nitrogen fertilization of the algae bloom.
* Pesticides can kill useful insects as well as those that destroy crops.
* Generally notsustainable .
* Often results in an inferior product.Fact|date=July 2008
* Use of chemicals on fields creates run-off, excess runs off into rivers and lakes causing pollution.
*Animal welfare is significantly decreased compared to organic, animals are kept in tight living conditions, over-fed and only have a small life span before being slaughteredPre modern intensive farming
Pre modern intensive farming techniques and structures include terracing, rice paddies, and various forms of
aquaculture .Oysters
"Oysters were likely the first sea animal to be transported from one area to another and cultivated as food. The ancient world, while knowing little about the reproduction of oysters, knew much about the conditions necessary for their growth. Pliny the Elder, a noted Roman naturalist of the first century, has left an account of artificial oyster beds established in Lake Lucrinus near Naples by a
Sergius Orata about 95 B.C. Orata's methods consisted of preparing the grounds by removing other forms of marine life, planting seed oysters, cultivating the oysters by keeping them separated in order to grow to a well-formed, mature size, and finally harvesting them when they were ready for market. Modern oyster farming, based on the knowledge of oyster biology, basically follows the Roman procedure.Fisheries and Oceans Canada] article "American Oyster"Terrace
In
agriculture , a terrace is a leveled section of ahill y cultivated area, designed as a method ofsoil conservation to slow or prevent the rapidsurface runoff ofirrigation water. Often such land is formed into multiple terraces, giving a stepped appearance. The human landscapes ofrice cultivation in terraces that follow the natural contours of the escarpments likecontour ploughing is a classic feature of the island ofBali and theBanaue Rice Terraces inBenguet ,Philippines . InPeru , the Inca made use of otherwise unusable slopes bydrystone wall ing to create terraces.Rice paddy
A paddy field is a flooded parcel of
arable land used for growingrice and other semiaquatic crops. Paddy fields are a typical feature ofrice -growing countries of east andsoutheast Asia includingMalaysia ,China ,Sri Lanka ,Myanmar ,Thailand ,Korea ,Japan ,Vietnam ,Taiwan ,Indonesia ,India , and thePhilippines . They are also found in other rice-growing regions such asPiedmont (Italy), theCamargue (France) and theArtibonite Valley (Haiti). They can occur naturally alongriver s ormarshes , or can be constructed, even on hillsides, often with much labour and materials. They require large quantities ofwater forirrigation , which can be quite complex for a highly developed system of paddy fields. Flooding provides water essential to the growth of the crop. It also gives an environment favourable to the strain of rice being grown, and is hostile to manyspecies ofweed s. As the onlydraft animal species which is adapted for life inwetlands , the water buffalo is in widespread use in Asian rice paddies. There are significant adverse environmental impacts from rice paddy cultivation due to the generation of large quantities ofmethane gas. World methane production due to rice paddies has been estimated in the range of 50 to 100 million tonnes per annum; [ [http://www.ghgonline.org/methanerice.htm Methane gas generation from rice paddies] ] this level ofgreenhouse gas generation is a large component of theglobal warming threat and derives simply from an expanding human population.Rice-farming and the use of paddies in Korea is ancient. Korean paddy-farming can provide cultural background on the use of paddies in
East Asia . A pit-house at the Daecheon-ni site yielded carbonized rice grains and radiocarbon dates indicating that rice cultivation may have begun as early as the MiddleJeulmun Pottery Period (c. 3500-2000 B.C.) in theKorean Peninsula (Crawford and Lee 2003). The earliest rice cultivation in the Korean Peninsula may have used dry-fields instead of paddies.The earliest Mumun features were usually located in low-lying narrow gulleys that were naturally swampy and fed by the local stream system. Some Mumun paddies in flat areas were made of a series of squares and rectangles separated by bunds approximately 10 cm in height, while terraced paddies consisted of long irregularly shapes that followed natural contours of the land at various levels (Bale 2001; Kwak 2001).
Mumun Period rice farmers used all of the elements that are present in today's paddies such terracing, bunds, canals, and small reservoirs. We can grasp some paddy-farming techniques of the Middle Mumun (c. 850-550 B.C.) from the well-preserved wooden tools excavated from archaeological rice paddies at the Majeon-ni Site. However,
iron tools for paddy-farming were not introduced until sometime after 200 B.C. The spatial scale of individual paddies, and thus entire paddy-fields, increased with the regular use of iron tools in theThree Kingdoms of Korea Period (c. A.D. 300/400-668).French Intensive Horticulture
Modern intensive farming types
Modern intensive farming refers to the industrialized production of animals (livestock, poultry and fish) and crops. The methods deployed are designed to produce the highest output at the lowest cost; usually using economies of scale, modern machinery, modern medicine, and global trade for financing, purchases and sales. The practice is widespread in
developed nation s, and most of themeat ,dairy , eggs, and crops available insupermarket s are produced in this manner.ustainable intensive farming
Biointensive agriculture focuses on maximizing efficiency: yield per unit area, yield per energy input, yield per water input, etc.Agroforestry combines agriculture and orchard/forestry technologies to create more integrated, diverse, productive, profitable, healthy and sustainable land-use systems.Intercropping can also increase total yields per unit of area or reduce inputs to achieve the same, and thus represents (potentially sustainable) agricultural intensification. Unfortunately, yields of any specific crop often diminish and the change can present new challenges to farmers relying on modern farming equipment which is best suited tomonoculture .Intensive aquaculture
Aquaculture is the cultivation of the natural produce of
water (fish ,shellfish ,algae ,seaweed and other aquatic organisms). Intensive Aquaculture can often involve tanks or other highly controlled systems which are designed to boost production for the available volume or area of water resource. [http://www.answers.com/topic/aquaculture American Heritage Definition of Aquaculture] ] [http://www.answers.com/topic/aquaculture McGraw Hill Sci-Tech Encyclopedia] ]Intensive livestock farming
The modern examples of intensive farming are broadly referred to as Concentrated Animal Feeding Operations (CAFOs) or often termed
Factory farming . These include:
*Intensive pig farming or Intensive piggery farming
* Large scalechicken farms
*Cattle feed lotsManaged intensive grazing
This sustainable intensive livestock management system is increasingly used to optimize production within a sustainability framework and is generally not considered
Factory farming .Individual industrial agriculture farm
Major challenges and issues faced by individual industrial agriculture farms include:
* integrated farming systems
* crop sequencing
* water use efficiency
* nutrient audits
* herbicide resistance
* financial instruments (such as futures and options)
* collect and understand own farm information;
* knowing your products
* knowing your markets
* knowing your customers
* satisfying customer needs
* securing an acceptable profit margin
* cost of servicing debt;
* ability to earn and access off-farm income;
* management of machinery and stewardship investments. [http://www.regional.org.au/au/roc/1995/roc1995001.htm The Regional Institute] article "EVOLUTION OF THE FARM OFFICE"]Integrated farming systems
An integrated farming system is a progressive biologically integrated
sustainable agriculture system such asIntegrated Multi-Trophic Aquaculture orZero waste agriculture whose implementation requires exacting knowledge of the interactions of numerous species and whose benefits include sustainability and increased profitability.Elements of this integration can include:
* intentionally introducing flowering plants into agricultural ecosystems to increase pollen-and nectar-resources required by natural enemies of insect pests [ [http://ifs.orst.edu/insect.html Oregon State University - Integrated Farming Systems - Insectary Plantings - Enhancing Biological Control with Beneficial Insectary Plants] ]
* using crop rotation and cover crops to suppress nematodes in potatoes [ [http://ifs.orst.edu/pubs/nscc.html Oregon State University - Integrated Farming Systems - Nematode Supression by Cover Crops] ]Crop sequencing
Crop rotation or crop sequencing is the practice of growing a series of dissimilar types of crops in the same space in sequential seasons for various benefits such as to avoid the build up of
pathogens and pests that often occurs when one species is continuously cropped. Crop rotation also seeks to balance the fertility demands of various crops to avoid excessive depletion of soil nutrients. A traditional component of crop rotation is the replenishment ofnitrogen through the use ofgreen manure in sequence with cereals and other crops. It is one component ofpolyculture . Crop rotation can also improvesoil structure and fertility by alternating deep-rooted and shallow-rooted plants.Water use efficiency
Crop
irrigation accounts for 70% of the world's fresh water use. [Pimentel, Berger, et al., "Water resources: agricultural and environmental issues", BioScience 54.10 (Oct 2004), p909] The agricultural sector of most countries is important both economically and politically, and water subsidies are common. Conservation advocates have urged removal of all subsidies to force farmers to grow more water-efficient crops and adopt less wasteful irrigation techniques.For crop irrigation and plant irrigation, optimal water efficiency means minimizing losses due to evaporation or runoff. An
evaporation pan can be used to determine how much water is required to irrigate the land. Flood irrigation, the oldest and most common type, is often very uneven in distribution, as parts of a field may receive excess water in order to deliver sufficient quantities to other parts. Overhead irrigation, using center-pivot or lateral-moving sprinklers, gives a much more equal and controlled distribution pattern, but in extremely dry conditions much of the water may evaporate before it reaches the ground.Drip irrigation is the most expensive and least-used type, but offers the best results in delivering water to plant roots with minimal losses.As changing irrigation systems can be a costly undertaking, conservation efforts often concentrate on maximizing the efficiency of the existing system. This may include chiseling compacted soils, creating furrow dikes to prevent runoff, and using soil moisture and rainfall sensors to optimize irrigation schedules. [US EPA, " [http://www.epa.gov/ow/you/chap3.html Clean Water Through Conservation] ", Practices for Agricultural Users]
Water catchment management measures includerecharge pit s, which capture rainwater and runoff and use it to recharge ground water supplies. This helps in the formation of ground water wells etc. and eventually reduces soil erosion caused due to running water.Nutrient audits
Better nutrient audits allow farmers to spend less money on nutrients and to create less pollution since less nutrient is added to the soil and thus there is less to run off and pollute. Methodologies for assessing soil nutrient balances have been studied and used for farms and entire countries for decades. [ [http://www.fao.org/docrep/006/y5066e/y5066e06.htm FAO] "Methodologies for assessing soil nutrient balances"] But at present "there is no standard methodology for calculating nutrient budgets and there are no accepted 'benchmarks' figures against which to assess farm nutrient use efficiency. [A standard methodology] for calculating nutrient budgets on farms [is hoped to help reduce] diffuse water and air pollution from agriculture [through] best management practices in the use of fertilisers and organic manures, as part of the continued development of economically and environmentally sustainable farming systems." [ [http://www2.defra.gov.uk/research/project_data/More.asp?I=ES0124&M=CFO&V=ADAS DEFRA] ]
Herbicide resistance
In agriculture large scale and systematic weeding is usually required, often performed by machines such as cultivators or liquid herbicide sprayers. Selective herbicides kill specific targets while leaving the desired crop relatively unharmed. Some of these act by interfering with the growth of the weed and are often based on plant
hormones .Weed control throughherbicide is made more difficult when the weeds become resistant to the herbicide. Solutions include:
* using cover crops (especially those withallelopathic properties) that out-compete weeds and/or inhibit their regeneration.
* using a different herbicide
* using a different crop (e.g. genetically altered to be herbicide resistant; which ironically can create herbicide resistant weeds throughhorizontal gene transfer )
* using a different variety (e.g. locally-adapted variety that resists, tolerates, or even out-competes weeds)
* ploughing
* ground cover such as mulch or plastic
* manual removalSee also
*
Alan Kirton
*Green Revolution
*Integrated Multi-trophic Aquaculture
*Permaculture
*Polyculture
*Small-scale agriculture
*System of Rice Intensification References
Wikimedia Foundation. 2010.