- George Wetherill
George Wetherill (
August 12 ,1925 --July 19 ,2006 ) was the Director Emeritus, Department of Terrestrial Magnetism,Carnegie Institution of Washington , DC, USA.George Wetherill benefited from the
G.I. Bill to receive four degrees, the Ph. B. (1948), S.B. (1949), S.M. (1951), and Ph. D., in physics (1953), all from theUniversity of Chicago . He did his thesis research, on the spontaneous fission ofuranium , as well as nuclear processes in nature, as an U.S. Atomic Energy Commission Predoctoral Fellow. Upon receiving his Ph. D., Wetherill became a staff member at Carnegie's Department of Terrestrial Magnetism (DTM) in Washington, D.C. There, he joined an interdepartmental group of Carnegie scientists who were working to date the Earth's rocks by geochemical methods involving naturalradioactive decay . This involved determining the concentration and isotopic composition ofinert gases such asargon , as well as the isotopes ofstrontium and lead. He originated the concept of the Concordia Diagram for the uranium-lead isotopic system; this diagram became the standard means for determining precise ages of rocks, and of detecting the possibility ofmetamorphism , and it forms the basis for all high-precisiongeochronology in rocks dating back to the early history of the Earth. He was also a member of the Carnegie group that accurately determined the decay constants ofpotassium andrubidium , an effort that has also become fundamental to the measurement of geological time.Wetherill left DTM in 1960 to become a professor of geophysics and geology at the
University of California, Los Angeles . There, he served as chairman of the interdepartmental curriculum in geochemistry (1964-1968), and as chairman of the Department of Planetary and Space Sciences (1968-1972). At UCLA, his interests in age-dating techniques expanded to include extraterrestrial material, as he began applying his radiometric chronology techniques tometeorite and lunar samples. At the same time, he began theoretical explorations into the origin of meteorites. His studies concentrated on collisions between objects in theasteroid belt together with resonances between their motions and those of planets. He computed how these events could move material into Earth-crossing orbits to become meteorites or larger Earth-impacting bodies responsible for the devastating impacts that caused mass extinctions of the majority of living species, including the dinosaurs. Later, he, along with scientists elsewhere, proposed that a certain unusual class of meteorites was not asteroidal in origin but instead came from the planetMars . This was later confirmed by laboratory work elsewhere and is now well accepted.In 1975, Wetherill returned to Carnegie's Department of Terrestrial Magnetism as director. He remained director until 1991, when he became a staff member. At DTM, he began extending his research efforts into questions concerning the origin of the terrestrial planets--Mercury, Venus, Earth, and Mars. He was stimulated by earlier studies by Victor Safronov (O. Yu SchmidtInstitute, Moscow), who showed that as a swarm of
planetesimals coagulated into large bodies the swarm could evolve to produce a few terrestrial planets. Wetherill developed a technique to calculate numerically the orbital evolution and accumulation of planetesimal swarms, and he used the technique to reach specific predictions of the physical and orbital properties of terrestrial planets. His results agreed well with present observations.In addition to showing how the inner solar system formed, Wetherill's work provided the basis for a model of a giant-impact origin for the
Moon and the core of Mercury. It also led to explanations for the isotopic abundances of present-day planetary atmospheres. Recently, Wetherill has shown that Jupiter plays an important role in the evolution of oursolar system ; by ejectingcomets from the solar system, it offers a protective presence to the inner planets. Wetherill's theoretical work supports discussions on the origins of our solar system as well as onextrasolar planets.Wetherill provided leadership in the scientific community by serving on advisory committees for
NASA , the National Academy of Sciences, and theNational Science Foundation . For 17 years, he was editor of the Annual Review of Earth and Planetary Sciences. He served as president of theMeteoritical Society , theGeochemical Society , the Planetology Section of theAmerican Geophysical Union and the International Association of Geochemistry and Cosmochemistry.His awards include election to the National Academy of Sciences in 1974, the 1981
Leonard Medal of theMeteoritical Society , the 1984G. K. Gilbert Award of theGeological Society of America , the 1986 G. P. Kuiper Prize of the Division of Planetary Sciences of theAmerican Astronomical Society , the 1991Harry H. Hess Medal of theAmerican Geophysical Union , the 1997National Medal of Science awarded by President Clinton and the 2000J. Lawrence Smith Medal (National Academy of Sciences) "for his unique contributions to the cosmochronology of the planets and meteorites and to the orbital dynamics and formation of solar system bodies." In 2003 Wetherill was awarded theHenry Norris Russell Lectureship , the highest honor bestowed by the American Astronomical Society.Wetherill died [http://www.washingtonpost.com/wp-dyn/content/article/2006/07/21/AR2006072101558.html] at his home in Washington, D.C Wednesday, July 19, 2006 after a long illness.
External links
* [http://www.nasa.gov/centers/ames/news/releases/2000/00_34AR.html NASA]
* [http://www.dtm.ciw.edu//content/view/135/175/ Carnegie Institution Bio]
* [http://www.dtm.ciw.edu/wetherill/wetherill_publ.html Publications]
* [http://www.cirs-tm.org/researchers/researchers.php?id=184 International Center for Scientific research]
* [http://www.nature.com/nature/journal/v442/n7104/full/442756a.html Obituary in Nature]
Wikimedia Foundation. 2010.