Photostationary state

Photostationary state

The photostationary state of a reversible photochemical reaction is the equilibrium chemical composition under a specific kind of electromagnetic irradiation (usually a single wavelength of visible or UV light). It is a property of particular importance in photochromic compounds, often used as a measaure of their practical efficiency and usually quoted as a ratio or percentage. The position of the photostationary state is primarily a function of the irradiation parameters, the absorbance spectra of the chemical species, and the quantum yields of the reactions.

Overview

The rate of a photochemical reaction is proportional to the absorption cross section of the reactant with respect to the excitation source (σ), the quantum yield of reaction (Φ), and the intensity of the irradiation. In a reversible photochemical reaction between compounds A and B, there will therefore be a "forwards" reaction of A→B at a rate proportional to σa × ΦA→B and a "backwards" reaction of B→A at a rate proportional to σa × ΦB→A. The ratio of the rates of the forward and backwards reactions determines where the equilibrium lies, and thus the photostationary state is found at:


σa × ΦA→B / σb × ΦB→A

If (as is always the case to some extent) the compounds A and B have different absorption spectra, then there may exist wavelengths of light where σa is high and σb is low. Irradiation at these wavelengths will provide pgotostationary states that contain mostly B. Likewise, wavelengths that give photostationary states of predominantly A may exist. This is particularly likely in compounds such as some photochromics, where A and B have entirely different absorption bands. Compounds that may be readily switched in this way find utility in devices such as molecular switches and optical data storage.

Practical considerations

*Quantum yields of reaction (and to a lesser extent, absorption cross sections) are usually temperature and environment-dependent to some extent, and the photostationary state may therefore depend slightly on temperature and solvent as well as on the excitation.

*If thermodynamic interconversion of A and B can take place on a similar timescale to the photochemical reaction, it can complicate experimental measurements. This phenomenon can be important, for example in photochromatic eyeglasses.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • photostationary — |fōd.(ˌ)ō+ adjective Etymology: phot + stationary : of, relating to, or being a stationary state in which the rate of photochemical dissociation of reactants is equaled by the rate of recombination * * * photostationary to surface: see photo 1 …   Useful english dictionary

  • photostationary — adjective Describing a steady state reached by a photochemical reaction in which the rates of formation and disappearance of transient species are equal …   Wiktionary

  • Photochromism — is the reversible transformation of a chemical species between two forms by the absorption of electromagnetic radiation, where the two forms have different absorption spectra. [ [http://pubs.acs.org/journals/chreay/thematic/00/photo.html Chemical …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”