Mathematical object

Mathematical object

In mathematics and the philosophy of mathematics, a mathematical object is an abstract object arising in mathematics.

Commonly encountered mathematical objects include numbers, permutations, partitions, matrices, sets, functions, and relations. Geometry as a branch of mathematics has such objects as hexagons, points, lines, triangles, circles, spheres, polyhedra, topological spaces and manifolds. Algebra, another branch, has groups, rings, fields, group-theoretic lattices and order-theoretic lattices. Categories are simultaneously homes to mathematical objects and mathematical objects in their own right.

The ontological status of mathematical objects has been the subject of much investigation and debate by philosophers of mathematics. On this debate, see the monograph by Burgess and Rosen (1997).

Contents

Cantorian framework

One view that emerged around the turn of the 20th century with the work of Cantor is that all mathematical objects can be defined as sets. The set {0,1} is a relatively clear-cut example. On the face of it the group Z2 of integers mod 2 is also a set with two elements. However, it cannot simply be the set {0,1}, because this does not mention the additional structure imputed to Z2 by the operations of addition and negation mod 2: how are we to tell which of 0 or 1 is the additive identity, for example? To organize this group as a set it can first be coded as the quadruple ({0,1},+,−,0), which in turn can be coded using one of several conventions as a set representing that quadruple, which in turn entails encoding the operations + and − and the constant 0 as sets.

This approach raises the fundamental philosophical question of whether the ontology of mathematics should be beholden to practice or pedagogy. Mathematicians do not work with such codings, which are neither canonical nor practical. They do not appear in any algebra texts, and neither students nor instructors in algebra courses have any familiarity with such codings. Hence, if ontology is to reflect practice, mathematical objects cannot be reduced to sets in this way.

Foundational paradoxes

If, however, the goal of mathematical ontology is taken to be the internal consistency of mathematics, it is more important that mathematical objects be definable in some uniform way (for example, as sets) regardless of actual practice, in order to lay bare the essence of its paradoxes. This has been the viewpoint taken by foundations of mathematics, which has traditionally accorded the management of paradox higher priority than the faithful reflection of the details of mathematical practice as a justification for defining mathematical objects to be sets.

Much of the tension created by this foundational identification of mathematical objects with sets can be relieved without unduly compromising the goals of foundations by allowing two kinds of objects into the mathematical universe, sets and relations, without requiring that either be considered merely an instance of the other. These form the basis of model theory as the domain of discourse of predicate logic. From this viewpoint, mathematical objects are entities satisfying the axioms of a formal theory expressed in the language of predicate logic.

Category theory

A variant of this approach replaces relations with operations, the basis of universal algebra. In this variant the axioms often take the form of equations, or implications between equations.

A more abstract variant is category theory, which abstracts sets as objects and the operations thereon as morphisms between those objects. At this level of abstraction mathematical objects reduce to mere vertices of a graph whose edges as the morphisms abstract the ways in which those objects can transform and whose structure is encoded in the composition law for morphisms. Categories may arise as the models of some axiomatic theory and the homomorphisms between them (in which case they are usually concrete, meaning equipped with a faithful forgetful functor to the category Set or more generally to a suitable topos), or they may be constructed from other more primitive categories, or they may be studied as abstract objects in their own right without regard for their provenance.

References

  • Azzouni, J., 1994. Metaphysical Myths, Mathematical Practice. Cambridge University Press.
  • Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object. Oxford Univ. Press.
  • Davis, Philip and Reuben Hersh, 1999 [1981]. The Mathematical Experience. Mariner Books: 156-62.
  • Gold, Bonnie, and Simons, Roger A., 2008. Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America.
  • Hersh, Reuben, 1997. What is Mathematics, Really? Oxford University Press.
  • Sfard, A., 2000, "Symbolizing mathematical reality into being, Or how mathematical discourse and mathematical objects create each other," in Cobb, P., et al., Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools and instructional design. Lawrence Erlbaum.
  • Stewart Shapiro, 2000. Thinking about mathematics: The philosophy of mathematics. Oxford University Press.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Program (mathematical object) — A program is a mathematical space suggested by John Backus. He wished to turn computer programming into a formal science by strictly defining it.Informally, a mathematical space S is a set Sobj of the objects themselves and a set Sopr of… …   Wikipedia

  • Mathematical proof — In mathematics, a proof is a convincing demonstration (within the accepted standards of the field) that some mathematical statement is necessarily true.[1][2] Proofs are obtained from deductive reasoning, rather than from inductive or empirical… …   Wikipedia

  • Mathematical jargon — The language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in… …   Wikipedia

  • Mathematical singularity — In mathematics, a singularity is in general a point at which a given mathematical object is not defined, or a point of an exceptional set where it fails to be well behaved in some particular way, such as differentiability. See Singularity theory… …   Wikipedia

  • Mathematical logic — (also known as symbolic logic) is a subfield of mathematics with close connections to foundations of mathematics, theoretical computer science and philosophical logic.[1] The field includes both the mathematical study of logic and the… …   Wikipedia

  • Object — may refer to: Object (philosophy), a thing, being or concept Entity, something that is tangible and within the grasp of the senses As used in object relations theories of psychoanalysis, that to which a subject relates. Object (grammar), a… …   Wikipedia

  • Object language — An object language is a language which is the object of study in various fields including logic, linguistics, mathematics and theoretical computer science. The language being used to talk about an object language is called a metalanguage. An… …   Wikipedia

  • Object of the mind — An object of the mind is an object which exists in the imagination, but which, in the real world, can only be represented or modeled. Some such objects are mathematical abstractions, literary concepts, or fictional scenarios. Closely related are… …   Wikipedia

  • Object theory — For the concept of objects in philosophy, see Object (philosophy). Object theory is a theory in philosophy and mathematical logic concerning objects and the statements that can be made about objects. Contents 1 An informal theory 2 Objects 3 A… …   Wikipedia

  • Mathematical notation — For information on rendering mathematical formulas in Wikipedia, see Help:Formula. See also: Table of mathematical symbols Mathematical notation is a system of symbolic representations of mathematical objects and ideas. Mathematical notations are …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”