Toeplitz matrix

Toeplitz matrix

In the mathematical discipline of linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

:egin{bmatrix}a & b & c & d & e \f & a & b & c & d \g & f & a & b & c \h & g & f & a & b \j & h & g & f & a end{bmatrix}.

Any "n"×"n" matrix "A" of the form

:A =egin{bmatrix} a_{0} & a_{-1} & a_{-2} & ldots & ldots &a_{-n+1} \ a_{1} & a_0 & a_{-1} & ddots & & vdots \ a_{2} & a_{1} & ddots & ddots & ddots& vdots \ vdots & ddots & ddots & ddots & a_{-1} & a_{-2}\ vdots & & ddots & a_{1} & a_{0}& a_{-1} \a_{n-1} & ldots & ldots & a_{2} & a_{1} & a_{0}end{bmatrix}

is a Toeplitz matrix. If the "i","j" element of "A" is denoted "A""i","j", then we have

:A_{i,j} = A_{i-1,j-1}.

Properties

Generally, a matrix equation

:Ax=b

is the general problem of "n" linear simultaneous equations to solve. If "A" is a Toeplitz matrix, then the system is rather special (has only 2"n" − 1 degrees of freedom, rather than "n"2). One could therefore expect that solution of a Toeplitz system would be easier.

This can be investigated by the transformation

:AU_n-U_mA,

which has rank 2, where U_k is the down-shift operator. Specifically, one can by simple calculation show that

:AU_n-U_mA=egin{bmatrix}a_{-1} & cdots & a_{-n+1} & 0 \vdots & & & -a_{-n+1} \vdots & & & vdots \ 0 & cdots & & -a_{n-n-1}end{bmatrix}

where empty places in the matrix are replaced by zeros.

Notes

These matrices have uses in computer science because it can be shown that the addition of two Toeplitz matrices can be done in O("n") time, a Toeplitz matrix can be multiplied by a vector in O("n" log "n") time, and the matrix multiplication of two Toeplitz matrices can be done in O(n^2) time.

Toeplitz systems of form Ax=b can be solved by the Levinson-Durbin Algorithm in Θ(n^2) time. Variants of this algorithm have been shown to be weakly stable in the sense of James Bunch (i.e., they exhibit numerical stability for well-conditioned linear systems).

Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix.

If a Toeplitz matrix has the additional property that a_i=a_{i+n}, then it is a circulant matrix.

Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.

The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of h and x can be formulated as:

egin{matrix} y & = & h ast x \ & = & egin{bmatrix} h_1 & 0 & ldots & 0 & 0 \ h_2 & h_1 & ldots & vdots & vdots \ h_3 & h_2 & ldots & 0 & 0 \ vdots & h_3 & ldots & h_1 & 0 \ h_{m-1} & vdots & ldots & h_2 & h_1 \ h_m & h_{m-1} & vdots & vdots & h_2 \ 0 & h_m & ldots & h_{m-2} & vdots \ 0 & 0 & ldots & h_{m-1} & h_{m-2} \ vdots & vdots & vdots & h_m & h_{m-1} \ 0 & 0 & 0 & ldots & h_m \ end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ vdots \ x_n \ end{bmatrix} \ y^T & = & egin{bmatrix} h_1 & h_2 & h_3 & ldots & h_{m-1} & h_m \ end{bmatrix} egin{bmatrix} x_1 & x_2 & x_3 & ldots & x_n & 0 & 0 & 0& ldots & 0 \ 0 & x_1 & x_2 & x_3 & ldots & x_n & 0 & 0 & ldots & 0 \ 0 & 0 & x_1 & x_2 & x_3 & ldots & x_n & 0 & ldots & 0 \ vdots & vdots & vdots & vdots & vdots & ldots & vdots & vdots & ldots & 0 \ 0 & ldots & 0 & 0 & x_1 & ldots & x_{n-2} & x_{n-1} & x_{n} & vdots \ 0 & ldots & 0 & 0 & 0 & x_1 & ldots & x_{n-2} & x_{n-1} & x_{n} \ end{bmatrix}. end{matrix}

This approach can be extended to compute autocorrelation, cross-correlation, moving average etc.

ee also

*Circulant matrix

External links

* [http://ee.stanford.edu/~gray/toeplitz.pdf Toeplitz and Circulant Matrices: A Review, by R. M. Gray]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Toeplitz-Matrix — Toeplitz Matrizen sind (endliche oder unendliche) Matrizen mit einer speziellen Struktur. Sie sind nach Otto Toeplitz benannt, der ihre algebraischen und funktionalanalytischen Eigenschaften in dem 1911 erschienenen Artikel Zur Theorie der… …   Deutsch Wikipedia

  • TOEPLITZ, OTTO — (1881–1940), German mathematician. Toeplitz was professor of mathematics at Kiel (1920) and Bonn (1928–35) until his dismissal by the Nazis. He immigrated to Palestine in 1939 and held an administrative post at the Hebrew University. He… …   Encyclopedia of Judaism

  • Toeplitz operator — In operator theory, a Toeplitz operator is the compression of a multiplication operator on the circle to the Hardy space. Details Let S 1 be the circle, with the standard Lebesgue measure, and L 2( S 1) be the Hilbert space of square integrable… …   Wikipedia

  • Block matrix — In the mathematical discipline of matrix theory, a block matrix or a partitioned matrix is a matrix broken into sections called blocks. Looking at it another way, the matrix is written in terms of smaller matrices.[1] We group the rows and… …   Wikipedia

  • Matrice de Toeplitz — En algèbre linéaire, une matrice de Toeplitz (d après Otto Toeplitz) ou matrice à diagonales constantes est une matrice dont les coefficients sur une diagonale descendant de gauche à droite sont les mêmes. Par exemple, la matrice suivante est une …   Wikipédia en Français

  • Zyklische Matrix — In der linearen Algebra bezeichnet man eine Matrix als zyklisch oder zirkulant, wenn ihre Zeilen und Spalten eine bestimmte Permutationsbedingung erfüllen. Wegen des unten beschriebenen Zusammenhangs mit der diskreten schnellen Fourier… …   Deutsch Wikipedia

  • Otto Toeplitz — and Alexander Ostrowski. Otto Toeplitz (1 August 1881, Breslau – 15 February 1940, Jerusalem) was a German Jewish mathematician working in functional analysis. Contents …   Wikipedia

  • Circulant matrix — In linear algebra, a circulant matrix is a special kind of Toeplitz matrix where each row vector is rotated one element to the right relative to the preceding row vector. In numerical analysis, circulant matrices are important because they are… …   Wikipedia

  • Hankel matrix — In linear algebra, a Hankel matrix, named after Hermann Hankel, is a square matrix with constant (positive sloping) skew diagonals, e.g.::egin{bmatrix}a b c d e b c d e f c d e f g d e f g h e f g h i end{bmatrix}.In mathematical terms::a {i,j} …   Wikipedia

  • Cauchy matrix — In mathematics, a Cauchy matrix is an m imes n matrix A, with elements in the form:a {ij}={frac{1}{x i y j;quad x i y j eq 0,quad 1 le i le m,quad 1 le j le nwhere x i and y j are elements of a field mathcal{F}, and (x i) and (y j) are injective… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”