Cauchy index

Cauchy index

In mathematical analysis, the Cauchy index is an integer associated to a real rational function over an interval. By the Routh-Hurwitz theorem, we have the following interpretation: the Cauchy index of

:"r"("x")="p"("x")/"q"("x")

over the real line is the difference between the number of roots of "f"("z") located in the right half-plane and those located in the left-half plane. The complex polynomial "f"("z") is such that

:"f"("iy")="q"("y")+"ip"("y").

We must also assume that "p" has degree less than the degree of "q".

Definition

* The Cauchy index was first defined for a pole "s" of the rational function "r" by Augustin Louis Cauchy in 1837 as:: I_sr=left{egin{matrix}+1 & extrm{if } lim_{x o s,xs}=+infty\-1 & extrm{if } lim_{x o s,xs}=-infty\0 & extrm{else.}&end{matrix} ight.

* A generalization over the compact interval ["a","b"] is direct (when neither "a" nor "b" are poles of "r"("x")): it is the sum of the Cauchy indices I_s of "r" for each "s" located in the interval. We usually denote it by I_a^br.

* We can then generalize to intervals of type [-infty,+infty] since the number of poles of "r" is a finite number (by taking the limit of the Cauchy index over ["a","b"] for "a" and "b" going to infinity).

Examples

* Consider the rational function::r(x)=frac{4x^3 -3x}{16x^5 -20x^3 +5x}=frac{p(x)}{q(x)}.We recognize in "p"("x") and "q"("x") respectively the Chebyshev polynomials of degree 3 and 5. Thus the function "r"("x") has poles in x_j=cos((2i-1)pi/2n) for "j"=1,...,5. We can see on the picture that I_{x_1}r=I_{x_2}r=1 and I_{x_4}r=I_{x_5}r=-1. For the pole in zero, we have I_{x_3}r=0 since the left and right limits are equal (which is because "p"("x") also has a root in zero). We conclude that I_{-1}^1r=0=I_{-infty}^{+infty}r since "q"("x") has only 5 roots, all in [-1,1] . We cannot use here the Routh-Hurwitz theorem as each complex polynomial with "f"("iy")="q"("y")+"ip"("y") has a zero on the imaginary line (namely at the origin).

External links

* [http://deslab.mit.edu/DesignLab/itango/multi/sld008.htm The Cauchy Index]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Cauchy's theorem (group theory) — Cauchy s theorem is a theorem in the mathematics of group theory, named after Augustin Louis Cauchy. It states that if G is a finite group and p is a prime number dividing the order of G (the number of elements in G ), then G contains an element… …   Wikipedia

  • Cauchy's equation — is an empirical relationship between the refractive index n and wavelength of light λ for a particular transparent material. It is named for the mathematician Augustin Louis Cauchy, who defined it in 1836.The most general form of Cauchy s… …   Wikipedia

  • Cauchy sequence — In mathematics, a Cauchy sequence, named after Augustin Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. To be more precise, by dropping enough (but still only a finite number of) terms from… …   Wikipedia

  • Cauchy-Folge — Als Cauchy Folge wird in der Mathematik eine Folge mit einer speziellen Eigenschaft bezeichnet, die eng mit dem Begriff der Konvergenz zusammenhängt. Diese Folgen sind nach dem französischen Mathematiker Augustin Louis Cauchy benannt und von… …   Deutsch Wikipedia

  • Cauchy-Eigenschaft — Das Cauchykriterium für unendliche Reihen (nach Augustin Louis Cauchy) ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung ob eine unendliche Reihe konvergent oder divergent ist. Sei eine unendliche Reihe mit reellen oder …   Deutsch Wikipedia

  • Cauchy-Kriterium — Das Cauchykriterium für unendliche Reihen (nach Augustin Louis Cauchy) ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung ob eine unendliche Reihe konvergent oder divergent ist. Sei eine unendliche Reihe mit reellen oder …   Deutsch Wikipedia

  • Cauchy'sches Verdichtungskriterium — Das Cauchysche Verdichtungskriterium, auch bekannt als Cauchyscher Verdichtungssatz (nach Augustin Louis Cauchy), ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent oder divergent ist …   Deutsch Wikipedia

  • Cauchy-Netz — Ein Netz oder eine Moore Smith Folge stellt in der Topologie (einem Teilgebiet der Mathematik) eine Verallgemeinerung einer Folge dar. Der Begriff geht auf Eliakim Hastings Moore und H. L. Smith zurück. Mit Cauchynetzen lässt sich der Begriff der …   Deutsch Wikipedia

  • Modes of convergence (annotated index) — The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of… …   Wikipedia

  • Augustin-Louis Cauchy —     Augustin Louis Cauchy     † Catholic Encyclopedia ► Augustin Louis Cauchy     French mathematician, b. at Paris, 21 August, 1789; d. at Sceaux, 23 May, 1857. He owed his early training to his father, a man of much learning and literary taste …   Catholic encyclopedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”