Carathéodory conjecture

Carathéodory conjecture

The Carathéodory conjecture is a mathematical conjecture attributed to Constantin Carathéodory by Hans Ludwig Hamburger in a session of the Berlin Mathematical Society in 1924, [1] . Other early referencesare the presentation [3] of Stefan Cohn-Vossen at the International Congress of Mathematicians in Bologna and the book [2] by Wilhelm Blaschke. Carathéodory himself did publish research on the related lines of curvature but never committed the Conjecture into writing. In [1] , J. E. Littlewood mentions the Conjecture as an example of a mathematical claim that is easy to state but difficult to prove.Dirk Struik describes in [5] the formal analogy of the Conjecture with the Four Vertex Theorem for plane curves. A modern reference for the Conjecture is the book [6] of Marcel Berger.

Mathematical content

The Conjecture claims that any convex, closed and three times differentiable surface in three dimensional Euclidean space admits at least two umbilic points. The claim has been noted notto have any good mathematical motivation apart from the absence of counterexamples. In the sense of the conjecture, the spheroid with only two umbilic points and the sphere, all points of whichare umbilic, are examples of surfaces with minimal and maximal number of umbilics.

Mathematical research on the conjecture

It has attracted substantial mathematical research but remains unproven.

ee also

* Differential geometry of surfaces
* Second fundamental form
* Principal curvature

References

[1] Sitzungsberichte der Berliner Mathematischen Gesellschaft, 210. Sitzung am 26. Maerz 1924, Dieterichsche Universitätsbuchdruckerei, Göttingen 1924

[2] W. Blaschke, Differentialgeometrie der Kreise und Kugeln, Vorlesungen ueber Differentialgeometrie, vol. 3, Grundlehren der mathematischen Wissenschaften XXIX, Springer, Berlin 1929

[3] S. Cohn-Vossen, Der Index eines Nabelpunktes im Netz der Kruemmungslinien, Proceedings of the International Congress of Mathematicians, vol II, Nicola Zanichelli Editore, Bologna 1929

[4] J. E. Littlewood, A mathematician's miscellany, Methuen & Co, London 1953

[5] D. J. Struik, Differential Geometry in the large, Bull. Amer. Math. Soc. vol 37, number 2 (1931), 49 - 62

[6] M. Berger, A Panoramic View of Riemannian Geometry, Springer 2004

External links

* [http://www.w-volk.de/BMG/] Berliner Mathematische Gesellschaft


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Constantin Carathéodory — Born 13 September 1873 …   Wikipedia

  • Constantin Carathéodory — (né le 13 septembre 1873 à Berlin et mort le 2 février 1950 à Munich) est un mathématicien grec auteur d importants travaux en théorie des …   Wikipédia en Français

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • Каратеодори, Константин — В Википедии есть статьи о других людях с такой фамилией, см. Каратеодори. Каратеодори, Константин Constantin Carathéodory …   Википедия

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Umbilical point — In the differential geometry of surfaces in three dimensions, umbilics or umbilical points are points which are locally spherical. At such points both principal curvatures are equal, and every tangent vector is a principal direction . Umbilic… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Histoire des mathématiques — L’histoire des mathématiques s étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu au XVIIe siècle, le développement des connaissances mathématiques s’effectue… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”