Laplace invariant

Laplace invariant

In differential equations, the Laplace invariant of any of certain differential operators is a certain function of the coefficients and their derivatives. Consider a bivariate hyperbolic differential operator of the second order

:partial_x , partial_y + a,partial_x + b,partial_y + c, ,

whose coefficients

: a=a(x,y), b=c(x,y), c=c(x,y),

are smooth functions of two variables. Its Laplace invariants have the form

:hat{a}= c- ab -a_x quad mbox{and} quad hat{b}=c- ab -b_y.

Their importance is due to the classical theorem:

Theorem: "Two operators of the form are equivalent under gauge transformations if and only if when their Laplace invariants coincide pairwise."

Here the operators :A quad mbox{and} quad ilde A

are called "equivalent" if there is a gauge transformation that takes one to the other:

: ilde Ag= e^{-varphi}A(e^{varphi}g)equiv A_varphi g.

Laplace invariants can be regarded as factorization "remainders" for the initial operator "A":

:partial_x, partial_y + a,partial_x + b,partial_y + c = left{egin{array}{c}(partial_x + b)(partial_y + a) - ab - a_x + c ,\(partial_y + a)(partial_x + b) - ab - b_y + c .end{array} ight.

If at least one of Laplace invariants is not equal to zero, i.e.

: c- ab -a_x eq 0 quad mbox{and/or} quadc- ab -b_y eq 0,

then this representation is a first step of the Laplace-Darboux transformations used for solving"non-factorizable" bivariate linear partial differential equations (LPDEs).

If both Laplace invariants are equal to zero, i.e.

: c- ab -a_x=0 quad mbox{and} quadc- ab -b_y =0,

then the differential operator "A" is factorizable and corresponding linear partial differential equation of second order is solvable.

Laplace invariants have been introduced for a bivariate linear partial differential operator (LPDO) of order 2 and of hyperbolic type. They are a particular case of "generalized invariants" which can be constructed for a bivariate LPDO of arbitrary order and arbitrary type; see Invariant factorization of LPDOs.

References

* G. Darboux, "Leçons sur la théorie général des surfaces" , Gauthier-Villars (1912) (Edition: Second)
* G. Tzitzeica G., "Sur un theoreme de M. Darboux". Comptes Rendu de l'Academie des Aciences 150 (1910), pp.955-956; 971-974
* L. Bianchi, "Lezioni di geometria differenziale", Zanichelli, Bologna, (1924)
* A. B. Shabat, "On the theory of Laplace-Darboux transformations". J. Theor. Math. Phys. Vol. 103, N.1,pp. 170-175 (1995) [http://www.springerlink.com/content/n426ttx757676531/]
* A.N. Leznov, M.P. Saveliev. "Group-theoretical methods for integration on non-linear dynamical systems" (Russian), Moscow, Nauka (1985). English translation: Progress in Physics, 15. Birkhauser Verlag, Basel (1992)

ee also

* Partial derivative
* Invariant (mathematics)
* Invariant theory
* Invariant factorization of LPDOs


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Invariant differential operators — appear often in mathematics and theoretical physics. There is no universal definition for them and the meaning of invariance may depend on the context. Usually, an invariant differential operator D is a map from some mathematical objects… …   Wikipedia

  • Invariant factorization of LPDOs — IntroductionFactorization of linear ordinary differential operators (LODOs) is known to be unique and in general, it finally reduces to the solution of a Riccati equation [http://en.wikipedia.org/wiki/Riccati equation] , i.e. factorization of… …   Wikipedia

  • Laplace–Runge–Lenz vector — Throughout this article, vectors and their magnitudes are indicated by boldface and italic type, respectively; for example, left| mathbf{A} ight| = A. In classical mechanics, the Laplace–Runge–Lenz vector (or simply the LRL vector) is a vector… …   Wikipedia

  • Invariant De Runge Lenz — Vecteur de Runge Lenz Dans cet article les vecteurs et leurs normes sont indiqués respectivement en gras et italique. Par exemple : . En mécanique classique, le vecteur de Runge Lenz ou invariant de Runge Lenz est un vecteur utilisé… …   Wikipédia en Français

  • Invariant de Runge Lenz — Vecteur de Runge Lenz Dans cet article les vecteurs et leurs normes sont indiqués respectivement en gras et italique. Par exemple : . En mécanique classique, le vecteur de Runge Lenz ou invariant de Runge Lenz est un vecteur utilisé… …   Wikipédia en Français

  • Invariant de runge lenz — Vecteur de Runge Lenz Dans cet article les vecteurs et leurs normes sont indiqués respectivement en gras et italique. Par exemple : . En mécanique classique, le vecteur de Runge Lenz ou invariant de Runge Lenz est un vecteur utilisé… …   Wikipédia en Français

  • Pierre-Simon Laplace — Laplace redirects here. For the city in Louisiana, see LaPlace, Louisiana. For the joint NASA ESA space mission, see Europa Jupiter System Mission. Pierre Simon, marquis de Laplace Pierre Simon Laplace (1749–1827). Posthumous portrait …   Wikipedia

  • Laplace transform — In mathematics, the Laplace transform is one of the best known and most widely used integral transforms. It is commonly used to produce an easily soluble algebraic equation from an ordinary differential equation. It has many important… …   Wikipedia

  • Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) …   Wikipedia

  • Green's function for the three-variable Laplace equation — The free space Green s function for the three variable Laplace equation is given in terms of the reciprocal distance between two points. That is to say the solution of the equation : abla^2 G(mathbf{x},mathbf{x }) = delta(mathbf{x} mathbf{x }) is …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”