Numerov's method

Numerov's method

Numerov's method is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.

Numerov's method was developed by Boris Vasil'evich Numerov.

Contents

The method

The Numerov method can be used to solve differential equations of the form


\left ( \frac{d^2}{dx^2} + f(x) \right ) y(x) = 0

The function y(x) is sampled in the interval [a..b] at equidistant positions xn. Starting from function values at two consecutive samples xn − 1 and xn the remaining function values can be calculated as


y_{n+1} = \frac {\left( 2-\frac{5 h^2}{6} f_n \right) y_n - \left( 1+\frac{h^2}{12}f_{n-1} \right)y_{n-1}}{1+\frac{h^2}{12}f_{n+1}}

where fn = f(xn) and yn = y(xn) are the function values at the positions xn and h = xnxn − 1 is the distance between two consecutive samples.

Nonlinear equations

For nonlinear equations of the form

 \frac{d^2}{dt^2} y = f(t,y)

the method is given by

 y_{n+1} = 2y_n - y_{n-1} + \tfrac{1}{12} h^2 (f_{n+1} + 10f_n + f_{n-1}).

This is an implicit linear multistep method, which reduces to the explicit method given above if the function f is linear in y. It achieves order 4 (Hairer, Nørsett & Wanner 1993, §III.10).

Application

In numerical physics the method is used to find solutions of the radial Schrödinger Equation for arbitrary potentials.


\left [ -{\hbar^2 \over 2\mu} \left ( \frac{1}{r} {\partial^2  \over \partial r^2} r- {l(l+1) \over r^2} \right ) + V(r) \right ] R(r) = E R(r)

The above equation can be rewritten in the form


\left [ {\partial^2  \over \partial r^2} - {l(l+1) \over r^2} + { 2\mu \over \hbar^2} \left( E - V(r)\right) \right ] u(r) = 0

with u(r) = rR(r). If we compare this equation with the defining equation of the Numerov method we see


f(x) = \frac{2\mu}{\hbar^2} \left(E - V(x) \right) - \frac{l(l+1)}{x^2}

and thus can numerically solve the radial Schrödinger equation.

Derivation

Starting from the Taylor expansion for y(xn) we get for the two sampling points adjacent to xn


y_{n+1} = y(x_n+h) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \frac{h^3}{3!}y'''(x_n) + \frac{h^4}{4!}y''''(x_n) + \frac{h^5}{5!}y'''''(x_n) + \mathcal{O} (h^6)

y_{n-1} = y(x_n-h) = y(x_n) - hy'(x_n) + \frac{h^2}{2!}y''(x_n) - \frac{h^3}{3!}y'''(x_n) + \frac{h^4}{4!}y''''(x_n) - \frac{h^5}{5!}y'''''(x_n) + \mathcal{O} (h^6)

The sum of those two equations gives


y_{n-1} + y_{n+1} = 2y_n + {h^2}y''_n + \frac{h^4}{12}y''''_n + \mathcal{O} (h^6)

We solve this equation for y''n and replace it by the expression y''n = − fnyn which we get from the defining differential equation.


h^2 f_n y_n = 2y_n-y_{n-1} - y_{n+1} + \frac{h^4}{12}y''''_n + \mathcal{O} (h^6)


We take the second derivative of our defining differential equation and get


y''''(x) = - \frac{d^2}{d x^2} \left[ f(x) y(x) \right]

We replace the second derivative \frac{d^2}{d x^2} with the second order difference quotient and insert this into our equation for fnyn


h^2 f_n y_n = 2y_n-y_{n-1} - y_{n+1} - \frac{h^4}{12} \frac{f_{n-1} y_{n-1} -2 f_{n} y_{n} + f_{n+1} y_{n+1}}{h^2} + \mathcal{O} (h^6)

We solve for yn + 1 to get


y_{n+1} = \frac {\left( 2-\frac{5 h^2}{6} f_n \right) y_n - \left( 1+\frac{h^2}{12}f_{n-1} \right)y_{n-1}}{1+\frac{h^2}{12}f_{n+1}} + \mathcal{O} (h^6).

This yields Numerov's method if we ignore the term of order h6. It follows that the order of convergence (assuming stability) is 4.

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Borís Númerov — Saltar a navegación, búsqueda Borís Vasílievich Númerov (ruso: Борис Васильевич Нумеров) (29 de enero de 1891, 13 de septiembre de 1941) fue un astrónomo y geofísico ruso. Creó varios instrumentos astronómicos y mineralógicos. También creó varios …   Wikipedia Español

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

  • Muneer Ahmad Rashid — Born 1934 (age 76–77) Lahore, Punjab Province …   Wikipedia

  • Numeric precision in Microsoft Excel — As with other spreadsheets, Microsoft Excel works only to limited accuracy because it retains only a certain number of figures to describe numbers (it has limited precision). Excel nominally works with 8 byte numbers by default, a modified 1985… …   Wikipedia

  • List of Russian astronomers and astrophysicists — Staff of the Pulkovo Observatory (around 1883–1886). Otto Wilhelm von Struve is in the center. This list of Russian astronomers and astrophysicists includes the famous astronomers, astrophysicists and cosmologists from the Russian Empire, the… …   Wikipedia

  • Meanings of minor planet names: 1001–1500 — This is a list of the sources of minor planet names. Those meanings marked with an asterisk (*) are guesswork, and should be checked against Lutz D. Schmadel s Dictionary of Minor Planet Names or Paul Herget s The Names of the Minor Planets… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”