Generalized Korteweg-de Vries equation
- Generalized Korteweg-de Vries equation
In mathematics the generalized Korteweg-de Vries equation harvs
last=Tsutsumi|first= Masayoshi|last2= Mukasa|first2= Toshio|last3= Iino|first3= Riichi|year=1970 is the nonlinear partial differential equation
:The function "f"is sometimes taken to be "f"("u")= "u""k"+1/("k"+1) + "u" for some positive integer "k" (where the extra "u" is a "drift term" that makes the analysis a little easier). The case "f"("u") = 3"u"2 is the original
Korteweg–de Vries equation.
References
*citation|id=MR|0289973
last=Tsutsumi|first= Masayoshi|last2= Mukasa|first2= Toshio|last3= Iino|first3= Riichi
title=On the generalized Korteweg-de Vries equation.
journal=Proc. Japan Acad. |volume=46 |year=1970 |pages=921--925
External links
*dpde
Wikimedia Foundation.
2010.
Look at other dictionaries:
Korteweg–de Vries equation — In mathematics, the Korteweg–de Vries equation (KdV equation for short) is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non linear partial … Wikipedia
Dispersionless equation — Dispersionless (or quasi classical) limits of integrable partial differential equations (PDE) arise in various problems of mathematics and physics and are intensively studied in the recent literature (see, f.i., [1] [5]). Contents 1 Examples 1.1… … Wikipedia
Euler–Lagrange equation — In calculus of variations, the Euler–Lagrange equation, or Lagrange s equation is a differential equation whose solutions are the functions for which a given functional is stationary. It was developed by Swiss mathematician Leonhard Euler and… … Wikipedia
List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… … Wikipedia
Inverse scattering transform — In mathematics, the inverse scattering transform is a method for solving some non linear partial differential equations. It is one of the most important developments in mathematical physics in the past 40 years. The method is a non linear… … Wikipedia
List of nonlinear partial differential equations — In mathematics and physics, nonlinear partial differential equations are (as their name suggests) partial differential equations with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and… … Wikipedia
Integrable system — In mathematics and physics, there are various distinct notions that are referred to under the name of integrable systems. In the general theory of differential systems, there is Frobenius integrability, which refers to overdetermined systems. In… … Wikipedia
Timeline of mathematics — A timeline of pure and applied mathematics history. Contents 1 Before 1000 BC 2 1st millennium BC 3 1st millennium AD 4 1000–1500 … Wikipedia
Carlos Kenig — Carlos E. Kenig (* 25. November 1953 in Buenos Aires) ist ein argentinisch US amerikanischer Mathematiker, der sich mit Analysis beschäftigt. Carlos Kenig 1990 in Nagoya Kenig ging in Buenos Aires zur Schule. Er studierte und promovierte 1978 an… … Deutsch Wikipedia
Кружков, Станислав Николаевич — Кружков Станислав Николаевич Дата рождения: 16 сентября 1936(1936 09 16) Место рождения: Москва Дата смерти: 12 июня 1997(1997 06 12) … Википедия