- Ishimori equation
The Ishimori equation (IE) is a
partial differential equation proposed by the Japanesemathematician harvtxt|Y. Ishimori|1984. Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable harv|Sattinger|Tracy|Venakides|1991|p=78.Equation
The IE has the form
:
:
Lax representation
The
Lax representation :
of the equation is given by
:
:
Here
:
the are the
Pauli matrices and is the identity matrix.Reductions
IE admits an important reduction:in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable.
Equivalent counterpart
The equivalent counterpart of the IE is the
Davey-Stewartson equation .ee also
*
Nonlinear Schrödinger equation
*Heisenberg model (classical)
*Spin wave
*Landau-Lifshitz equation
*Soliton
*Vortex
*Nonlinear systems
*Davey–Stewartson equation References
*
*citation|last=Ishimori|first=Y.|title=Multi-vortex solutions of a two-dimensional nonlinear wave equation|journal=Prog. Theor. Phys. |volume=72|year=1984|pages=33-37|id=MR|0760959
doi= 10.1143/PTP.72.33
*citation|last=Konopelchenko |first=B.G. |title=Solitons in multidimensions|publisher= World Scientific |year=1993|isbn=978-9810213480
*citation|last= Martina|first= L.|last2= Profilo |first2=G.|last3= Soliani|first3= G.|last4= Solombrino |first4=L. |title=Nonlinear excitations in a Hamiltonian spin-field model in 2+1 dimensions. |journal=Phys. Rev. B |volume=49|pages=12915 - 12922 |year=1994
*citation|editor1-first=David H.|editor1-last= Sattinger|editor2-first= C. A. |editor2-last=Tracy |title=Inverse Scattering and Applications|year=1991
id=MR|1135850
editor3-first=S.|editor3-last= Venakides|series= Contemporary Mathematics|volume= 122|publisher= American Mathematical Society|place= Providence, RI|year= 1991| ISBN:=0-8218-5129-2
*citation|first=Li-yeng |last=Sung|title= The Cauchy problem for the Ishimori equation|journal= Journal of Functional Analysis|volume=139|pages=29-67 |year=1996|doi=10.1006/jfan.1996.0078External links
* [http://tosio.math.toronto.edu/wiki/index.php/Ishimori_system Ishimori_system] at the dispersive equations wiki
Wikimedia Foundation. 2010.