Propagation constraint

Propagation constraint

In database systems, a propagation constraint "details what should happen to a related table when we update a row or rows of a target table" (Paul Beynon-Davies, 2004, p.108). Tables are linked using primary key to foreign key relationships. It is possible for users to update one table in a relationship in such a way that the relationship is no longer consistent and this is known as breaking referential integrity. An example of breaking referential integrity: if a table of employees includes a department number for 'Housewares' which is a foreign key to a table of departments and a user deletes that department from the department table then Housewares employees records would refer to a non-existent department number.

Propagation constraints are methods used by relational database management systems (RDBMS) to solve this problem by ensuring that relationships between tables are preserved without error. In his database textbook, Beynon-Daives explains the three ways that RDBMS handle deletions of target and related tuples:

* Restricted Delete - the user cannot delete the target row until all rows that point to it (via foreign keys) have been deleted. This means that all Housewares employees would need to be deleted, or their departments changed, before removing the department from the departmental table.
* Cascades Delete - can delete the target row and all rows that point to it (via foreign keys) are also deleted. The process is the same as a restricted delete, except that the RDBMS would delete the Houseware employees automatically before removing the department.
* Nullifies Delete - can delete the target row and all foreign keys (pointing to it) are set to null. In this case, after removing the housewares department, employees who worked in this department would have a NULL (unknown) value for their department.

Bibliography

*Beynon-Davies, P. (2004) "Database Systems" Third Edition, Palgrave.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Constraint satisfaction problem — Constraint satisfaction problems (CSP)s are mathematical problems defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite… …   Wikipedia

  • Constraint Handling Rules — (CHR) is a declarative programming language extension introduced in 1991[1][2] by Thom Frühwirth. Originally designed for developing (prototypes of) constraint programming systems, CHR is increasingly used as a high level general purpose… …   Wikipedia

  • Constraint logic programming — Programming paradigms Agent oriented Automata based Component based Flow based Pipelined Concatenative Concurrent computing …   Wikipedia

  • Constraint satisfaction — In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution to a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a vector of variables that… …   Wikipedia

  • Constraint programming — Programming paradigms Agent oriented Automata based Component based Flow based Pipelined Concatenative Concurrent computin …   Wikipedia

  • Constraint Satisfaction Problem — Ein Constraint Satisfaction Problem (Bedingungserfüllungsproblem, abgekürzt CSP) ist eine Aufgabenstellung aus der künstlichen Intelligenz und aus dem Operations Research. Aufgabe ist es, einen Zustand (d. h. Belegungen von Variablen) zu finden,… …   Deutsch Wikipedia

  • Constraint-Satisfaction-Problem — Ein Constraint Satisfaction Problem (dt.: Bedingungserfüllungsproblem, abgekürzt CSP) ist eine Aufgabenstellung aus der künstlichen Intelligenz und aus dem Operations Research. Aufgabe ist es, einen Zustand (d. h. Belegungen von Variablen) zu… …   Deutsch Wikipedia

  • Constraint Propagation —   A parallel processing technique used to locate data by simultaneously evaluating and exclude many possibilities in an expert system decision tree. See also Expert system …   International financial encyclopaedia

  • Hybrid algorithm (constraint satisfaction) — In constraint satisfaction, a hybrid algorithm solves a constraint satisfaction problem by the combination of two different methods, for example variable conditioning (backtracking, backjumping, etc.) and constraint inference (arc consistency,… …   Wikipedia

  • Local consistency — In constraint satisfaction, local consistency conditions are properties of constraint satisfaction problems related to the consistency of subsets of variables or constraints. Several such conditions exist, the most known being node consistency,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”