Schanuel's lemma

Schanuel's lemma

In mathematics, especially in the area of algebra known as module theory, Schanuel's lemma allows one to compare how far modules depart from being projective. It is useful in defining the Heller operator in the stable category, and in giving elementary descriptions of dimension shifting.

tatement

Schanuel's lemma is the following statement:

If 0 → "K" → "P" → "M" → 0 and 0 → "K"' → "P" ' → "M" → 0 are short exact sequences of "R"-modules and "P" and "P" ' are projective, then "K" ⊕ "P" ' is isomorphic to "K" ' ⊕ "P."

Proof

Define the following submodule of "P" ⊕ "P" ', where φ : "P" → "M" and φ' : "P" ' → "M":

: X = { (p,q) in P oplus P^prime : phi(p) = phi^prime(q) }.

The map π : "X" → "P", where π is defined as the projection of the first coordinate of "X" into "P", is surjective. Since φ is surjective, for any "p" in "X", one may find a "q" in "P" ' such that φ("p") = φ '("q"). This gives ("p","q") in "X" with π ("p","q") = "p". Now examine the kernel of the map π :

egin{align} ext{ker} ; pi &= { (0,q): (0,q) in X } \& = { (0,q): phi^prime(q) =0 } \& cong ; ext{ker} ; phi^prime cong K^prime.end{align}

We may conclude that there is a short exact sequence

: 0 ightarrow K^prime ightarrow X ightarrow P ightarrow 0.

Since "P" is projective this sequence splits, so "X" ≅ "K" ' ⊕ "P" . Similarly, we can write another map π : "X" → "P" ', and the same argument as above shows that there is another short exact sequence

: 0 ightarrow K ightarrow X ightarrow P^prime ightarrow 0,

and so "X" ≅ "P" ' ⊕ "K". Combining the two equivalences for "X" gives the desired result.

Long exact sequences

The above argument may also be generalized to long exact sequences. [cite book | author = Lam, T.Y. | title = Lectures on Modules and Rings | publisher = Springer | year = 1999 | id = ISBN 0387984283 pgs. 165-167.]

Origins

Stephen Schanuel discovered the argument in Irving Kaplansky's homological algebra course at the University of Chicago in Autumn of 1958. Kaplansky writes::"Early in the course I formed a one-step projective resolution of a module, and remarked that if the kernel was projective in one resolution it was projective in all. I added that, although the statement was so simple and straightforward, it would be a while before we proved it. Steve Shanuel spoke up and told me and the class that it was quite easy, and thereupon sketched what has come to be known as "Schanuel's lemma." " [cite book | author = Kaplansky, Irving. | title = Fields and Rings | publisher = University Of Chicago Press | year = 1972 | id = ISBN 0226424510 pgs. 165-168.]

Notes


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Stephen Schanuel — is an American mathematician working in the fields of abstract algebra and number theory, more specifically category theory and measure theory. While he was a graduate student at University of Chicago, he discovered Schanuel s lemma, an essential …   Wikipedia

  • Stephen Schanuel — Stephen Hoel Schanuel (* 14. Juli 1933 in St. Louis) ist ein US amerikanischer Mathematiker, der sich mit Algebra und Zahlentheorie (speziell Transzendente Zahlen) beschäftigt.[1] Schanuel studierte an der Princeton University (Bachelor 1955) und …   Deutsch Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • Transcendence theory — In mathematics, transcendence theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.TranscendenceThe fundamental theorem of algebra tells us that if we have a non zero polynomial… …   Wikipedia

  • Abstract nonsense — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

  • Duale Kategorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

  • Funktor (Mathematik) — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

  • Kategorientheorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelt wurde; Saunders MacLane nennt seine 1945 in Zusammenarbeit mit Samuel Eilenberg entstandene… …   Deutsch Wikipedia

  • Kleine Kategorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der sich Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelte; Saunders MacLane nennt seine 1945 gemeinsam mit Samuel Eilenberg entstandene „General… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”