Catalan's problem

Catalan's problem

In mathematics, Catalan's problem asks the number of ways "n" factors can be completely parenthesized by "n" − 1 pairs of parentheses. For example, the following are the 14 ways that 5 factors can be parenthesized:

* (1 (2 (3 (4 5))))
* (1 (2 ((3 4) 5)))
* (1 ((2 3) (4 5)))
* (1 ((2 (3 4)) 5))
* (1 (((2 3) 4) 5))
* ((1 2) (3 (4 5)))
* ((1 2) ((3 4) 5))
* ((1 (2 3)) (4 5))
* ((1 (2 (3 4))) 5)
* ((1 ((2 3) 4)) 5)
* (((1 2) 3) (4 5))
* (((1 2) (3 4)) 5)
* (((1 (2 3)) 4) 5)
* ((((1 2) 3) 4) 5)

The numbers of ways of performing these pairings are the Catalan numbers.

ee also

*Catalan number
*Eugène Charles Catalan

References

*cite book
last = Gardner
first = Martin
authorlink = Martin Gardner
coauthors =
title = Time Travel and Other Mathematical Bewilderments
publisher = W.H. Freeman and Company
date = 1988
location = New York
pages = p. 256
url =
doi =
id =
isbn = 0-7167-1924-X

*MathWorld|title=Catalan's Problem|urlname=CatalansProblem


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Catalan number — For names of numbers in Catalan, see List of numbers in various languages#Occitano Romance. In combinatorial mathematics, the Catalan numbers form a sequence of natural numbers that occur in various counting problems, often involving recursively… …   Wikipedia

  • Catalan's conjecture — (occasionally now referred to as Mihăilescu s theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu. 23 and 32 are two powers of natural numbers,… …   Wikipedia

  • Eugène Charles Catalan — (May 30,1814 ndash; February 14, 1894) was a Belgian mathematician. Biography Catalan was born in Bruges, Belgium, the only child of a French jeweller by the name of Joseph Catalan, in 1814. In 1825, he traveled to Paris and learned mathematics… …   Wikipedia

  • Théorème de Catalan — Le théorème de Catalan est un résultat de la théorie des nombres conjecturé par le mathématicien Eugène Charles Catalan. Ce théorème s énonce de la façon suivante : les deux seules puissances d entiers consécutives sont 8 et 9 (qui valent… …   Wikipédia en Français

  • Eugène Charles Catalan — Eugène Charles Catalan. Porträt von Emile Delperée, 1884 Eugène Charles Catalan (* 30. Mai 1814 in Brügge; † 14. Februar 1894) war ein belgischer Mathematiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Happy Ending problem — The Happy Ending problem (so named by Paul Erdős since it led to the marriage of George Szekeres and Esther Klein) is the following statement::Theorem. Any set of five points in the plane in general position [In this context, general position… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Aliquot sequence — In mathematics, an aliquot sequence is a recursive sequence in which each term is the sum of the proper divisors of the previous term. The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum of divisors …   Wikipedia

  • Sucesión alícuota — En Matemática, una sucesión alícuota es una sucesión recursiva en la que cada término es la suma de los divisores propios del término anterior. La sucesión alícuota que comienza con el entero positivo k puede ser definida formalmente mediante la… …   Wikipedia Español

  • Inhaltskette — Unter einer Inhaltskette (auch Aliquot Folge von engl. aliquot sequence) versteht man eine Kette iterativer Zahleninhalte (der Zahleninhalt einer Zahl ist die Summe ihrer echten Teiler), die dann endet, wenn sie periodisch wird (falls… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”