- Debian build toolchain
-
A typical input of the Debian build tools: three files constituting the source package (the bottom) and the unpacked source tree with a
debian
subdirectory added there by the package maintainer.The Debian build toolchain is a collection of software utilities used to create Debian source packages (
.dsc
) and Debian binary packages (.deb
files) from upstream source tarballs.These tools are used in the Debian project and also in Debian-based distributions such as Ubuntu.
Contents
Overview
Source code for free software is typically distributed in compressed tar archives called tarballs. Debian is a binary-oriented distribution, meaning that its
deb
packages include precompiled binaries and data files arranged into a file system hierarchy that the software expects. The Debian build toolchain thus needs instructions on how to use the upstream build system to build correctdeb
packages.These instructions are stored in the
debian
subdirectory, which is added to the source tree for the software being packaged by the package maintainer. While it is possible to build the package directly from the modified source tree, it is standard practice to create source packages, which contain the changes the maintainer made to the upstream sources in redistributable form.Source packages
A typical Debian source package consists of three files:
- The original tarball — a mere copy of the upstream source tarball if it is in
tar.gz
format and no changes are necessary, or a repacked tarball. The latter can happen if it contains a snapshot from a version control system that was never released in tarball form, or if the maintainer needs to remove files not compatible with the Debian Free Software Guidelines. - The
diff.gz
file, which contains changes to the upstream source made by the package maintainer. This includes the entiredebian
directory and any modified files outside it (although such changes are usually aggregated into patch files that are automatically applied before building). It is a file in the unified diff format, compressed with gzip. - The
dsc
file, which is a text file with metadata, such as the names of all files constituting the source package and their MD5 checksums. It also contains the signature of the creator of the source package.
For example, a source package named
foo
with upstream version 1.2.3 and Debian revision 4 can consist of the following files:foo_1.2.3.orig.tar.gz
foo_1.2.3-4.diff.gz
foo_1.2.3-4.dsc
A source package is created using the
dpkg-buildpackage
tool or its wrapperdebuild
. When invoked to create a source package,dpkg-buildpackage
calls the maintainer's rules to clean the source tree of any intermediate files, does various sanity checks, executesdiff
to produce the difference between the original tarball and the unpacked source tree, and finally, signs thedsc
file with the packager's key using thedebsign
utility.The reverse process — producing the unpacked source tree from a source package — is accomplished using the
dpkg-source
utility, which extracts the original tarball to a subdirectory and then applies the changes from thediff.gz
file. This is the first step that a build system does when building binary packages from a source package.The
debian
directoryThe
debian
directory contains files used bydpkg-buildpackage
to create both binary and source packages. Unlike RPM, which uses a singlespec
file for instructions, the Debian tools use an entire subdirectory with multiple files. Three files are required at minimum to correctly build a package —changelog
,control
andrules
. A fourth file,copyright
, is mandated by the Debian policy, but is a legal requirement rather than a technical one.By design, since they must be representable in a diff, all files in the
debian
directory are text files, most of which are human-readable and edited with a simple text editor.debian/changelog
This file contains information about all versions of the package since it was created. The build tools only process the top entry, which is used to determine the package version, urgency (which is only of relevance to Debian itself), and bugs in the distribution that this release fixes.
For example, for a package named
foo
, an exampledebian/changelog
entry can read like this:foo (1.2.3-1) unstable; urgency=low * New upstream release. * Dropped 02_manpage_hyphens.dpatch, fixed upstream. * Added 04_edit_button_crash.dpatch: fix a crash after pressing the edit button. (Closes: #654321) * debian/control: foo should conflict with libbar. (Closes: #987654) -- John Doe <jdoe@example.com> Fri, 30 Nov 2007 15:29:42 +0100
Debian provides two main utilities for manipulating the
debian/changelog
file:dch
is used to add new entries to the changelog or modify existing ones.dpkg-parsechangelog
parses the most recent entry and extracts data from it in aKey: value
format similar todebian/control
. It is primarily used in scripts.
debian/control
This file contains information about the source package and all binary packages it builds (there can be more than one; for example, the source package
libbar
can serve as the source for binary packageslibbar0
, which contains just the shared library, andlibbar-dev
, which contains a static version of the library and header files).It lists (among others) such things as the package name, maintainer, target architectures (for binary packages), build dependencies (packages that must be installed for the package to successfully build) and dependencies (packages that must be installed for the package to function properly when installed).
debian/rules
This file is a script that is invoked by
dpkg-buildpackage
with a single argument that specifies the action to take (clean
,build
,install
,binary
). Although it can technically be any kind of script, it is typically implemented as a makefile.Apart from invoking the upstream build system, most instructions in
debian/rules
are highly repetitive and ubiquitous, and thus, virtually alldebian/rules
files wrap this functionality in debhelper scripts. For example, automatically determining the dependencies based on shared libraries used is a very common action, and thus, instead of including the code necessary to do it, thedebian/rules
file simply callsdh_shlibdeps
. Other examples of debhelper scripts includedh_installdocs
, which installs stock documentation files such asdebian/copyright
into their appropriate locations, ordh_fixperms
, which ensures that files in the package have correct access rights (for example, executables in/usr/bin
have the "executable" bit set, but are only writable by the superuser).Since sequences of
debhelper
scripts are themselves repetitive, some packages simplifydebian/rules
files directly by using CDBS instead of usingdebhelper
directly.Patch systems
Sometimes, a maintainer needs to modify the original source. While this can be done simply by editing the files in place and including the changes in the
diff.gz
, this can make maintenance difficult when new upstream versions are released, because all the changes have to be examined and merged when necessary.Therefore, the Debian build toolchain includes several patch systems that allow applying and reverting groups of logically separated patches, each of which deals with one change and can be sent upstream as is. The canonical location for these files is
debian/patches
.The two most popular patch systems are
dpatch
andquilt
. The former generates and executes shell scripts that are non-standard unified diff files with a header, which nevertheless are compatible with the standarddiff
utility. Thedebian/rules
file is modified to calldpatch apply-all
before building the binary package anddpatch deapply-all
before building the source package (and cleaning up any build byproducts).quilt
and certain other patch systems eliminate the need for special headers and use standard diff files.Tracking changes in source packages:
debdiff
andinterdiff
Sometimes a user may want to look at differences between two source packages — for example, to generate a proposed patch against the version currently in the repository for inclusion in the distribution's bug tracking system. If both packages use the same upstream version, this can done using the
debdiff
tool, which produces differences between two source trees with packaging changes included.If the upstream tarballs for the two versions are different, such a naive comparison cannot be used. Instead, the
interdiff
utility can be used to produce a diff between two diff files (in this case, between twodiff.gz
files). A drawback is that aninterdiff
output requires more effort to apply, and the one applying the changes must also find and download the newer upstream tarball, which is typically done using theget-orig-source
rule indebian/rules
.Sanity checks with
lintian
This tool provides automated checks for common packaging mistakes in both binary and source packages, including Debian policy violations and potential compatibility problems.
While a maintainer typically aims to correct all issues pointed out by
lintian
, different distributions can have different policies regarding them. For example, Ubuntu requires all packages originating in Ubuntu to be clean, but for a package merged into Ubuntu from Debian, there is no such requirement: new changes should simply not introduce any warnings in addition to existing ones. This is done to minimize the divergence between Debian and Ubuntu packages.Here are example
lintian
outputs:W: foo source: source-contains-CVS-dir config/CVS N: N: Package contains a CVS directory. It was most likely included by N: accident, since transient CVS data usually doesn't belong in packages. N: Export from CVS rather than use a checkout. N:
W: libfoo-dev: debian-changelog-line-too-long line 2 N: N: The given line of the latest changelog entry is over 80 columns. Such N: changelog entries may look poor in terminal windows and mail messages N: and be annoying to read. Please wrap changelog entries at 80 columns N: or less where possible. N:
I: foo: arch-dep-package-has-big-usr-share 3399kB 77% N: N: The package has a significant amount of architecture-independent data N: in /usr/share, while it is an architecture-dependent package. This is N: wasteful of mirror space and bandwidth, as we then end up with N: multiple copies of this data, one for each architecture. N: N: If the data in /usr/share is not architecture-independent, it is a N: policy violation, and in this case, you should move that data N: elsewhere. N: N: See also: N: http://www.debian.org/doc/developers-reference/ch-best-pkging-practice N: s#s-bpp-archindepdata
Isolated build environments
Source packages are intended to be buildable on any installation of the target distribution version, provided that build dependencies are met. In addition, builds can be affected by packages already present in the system.
To verify that a package builds on any system, and to exclude any external factors, tools to create isolated build environments are used. These are
pbuilder
(Personal Builder) andsbuild
.These tools maintain minimal working systems in chroot, install only the necessary build dependencies listed in
debian/control
, and remove them when the build is finished. Therefore, usingpbuilder
, a package maintainer can detect if some build dependencies were not specified indebian/control
. Also,pbuilder
makes it possible to test-build for distributions other than the one the maintainer is running: for example, for the development version, while actually running the stable version.sbuild
is designed for integration with automated build daemons (buildd
). It is used by Debian build servers, which automatically build binary packages for every supported architecture. The Launchpad service provides similar build daemons for Ubuntu, both the official distribution and personal package archives (PPAs).See also
External links
Categories: - The original tarball — a mere copy of the upstream source tarball if it is in
Wikimedia Foundation. 2010.