Componendo and dividendo

Componendo and dividendo

In algebra, componendo and dividendo is a method of simplification. It states that

 \text{If } \frac{a}{b} = \frac{c}{d} \text{ and } a \neq b \text{, then }  \frac{a+b}{a-b} = \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{\frac{c}{d} + 1}{\frac{c}{d} - 1} = \frac{c+d}{c-d}.

Comment on the proof

We can similarly deduce the much more general fact that the value of any fraction

\frac{x_0 + \cdots + x_n}{y_0 + \cdots +y_n}

in which x0 and y0 are nonzero can be expressed in terms of the values of

\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}, \frac{y_1}{y_0}, \ldots, \frac{y_n}{y_0}

and the value of \frac{x_0}{y_0}, and so depends only on the values of those 2n + 1 fractions:

 \frac{x_0 + \cdots + x_n}{y_0 + \cdots +y_n}
= \frac{x_0}{y_0} \left(\frac{1 + \frac{x_1}{x_0} + \cdots + \frac{x_n}{x_0}}{1 + \frac{y_1}{y_0} + \cdots + \frac{y_n}{y_0}}\right)

The original result is essentially a special case of this fact, because

\frac{x+y}{x-y} = \frac{x+y}{x+(-y)}

can be regarded as a fraction of the above form.

This method is very useful to evaluate some simple and complex algebraic problems.

For instance :

(√3 + x)/(√3 − x) = 2

Find the value of x.

Solution :

Applying C & D

[({√3 + x} + {√3 − x})/({√3 + x} − {√3 − x} )] = (2 + 1)/(2 − 1)
=> 2√3/(2x) = 3/1
=> √3/x = 3
=> x = 1/√3



Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”