- Compound of twelve pentagrammic crossed antiprisms with rotational freedom
-
Compound of twelve pentagrammic crossed antiprisms with rotational freedom Type Uniform compound Index UC28 Polyhedra 12 pentagrammic crossed antiprisms Faces 120 triangles, 24 pentagrams Edges 240 Vertices 120 Symmetry group icosahedral (Ih) Subgroup restricting to one constituent 10-fold improper rotation (S10) This uniform polyhedron compound is a symmetric arrangement of 12 pentagrammic crossed antiprisms. It can be constructed by inscribing one pair of pentagrammic crossed antiprisms within a great icosahedron, in each of the six possible ways, and then rotating each by an equal and opposite angle θ.
When θ is 36 degrees, the antiprisms coincide in pairs to yield (two superimposed copies of) the compound of six pentagrammic crossed antiprisms (without rotational freedom).
This compound shares its vertices with the compound of twelve pentagonal antiprisms with rotational freedom.
References
- Skilling, John (1976), "Uniform Compounds of Uniform Polyhedra", Mathematical Proceedings of the Cambridge Philosophical Society 79: 447–457, doi:10.1017/S0305004100052440, MR0397554.
This polyhedron-related article is a stub. You can help Wikipedia by expanding it.