Jacobi integral

Jacobi integral

In celestial mechanics, Jacobi's integral represents a solution to the circular restricted three-body problem of celestial mechanics. [1]

The Jacobi integral is the only known integral for the 3-body restricted problem; unlike in the two-body problem, the energy and momentum of the system are not conserved separately and a general analytical solution is not possible. The integral has been used to derive numerous solutions in special cases.

Definition

ynodic system

One of the suitable coordinates system used is so called "synodic" or co-rotating system, placed at the barycentre, with the line connecting the two masses μ1, μ2 chosen as X axis and the length unit equal to their distance. As the system co-rotates with the two masses, they remain stationary and positioned at (-μ2,0) and (+μ1,0)1.

In the coordinate system x,!,y,! , the Jacobi constant is expressed as follows:

:C_J=n^2(x^2+y^2)+2cdot (frac{mu_1}{r_1}+frac{mu_2}{r_2})-(dot x^2+dot y^2+dot z^2)

where:

*n=frac{2pi}{T} is the mean motion (orbital period T)
*mu_1=Gm_1,!,mu_2=Gm_2,!, for the two masses m1, m2 and the gravitational constant G
*r_1,!,r_2,! are distances of the test particle from the two masses

Note that the Jacobi integral is minus twice the total energy per unit mass in the rotating frame of reference: the first term relates to centrifugal potential energy, the second represents gravitational potential and the third is the kinetic energy.

idereal system

In the inertial, sidereal co-ordinate system (ξ,η,ζ), the masses are orbiting the barycentre. In these co-ordinates the Jacobi constant is expressed by :

:C_J=2 cdot(frac{mu_1}{r_1}+frac{mu_2}{r_2})+ 2n(xi dot eta- eta dot xi) - (dot xi ^2+dot eta ^2+dot zeta^2)

Derivation

In the co-rotating system, the accelerations can be expressed as derivatives of a single scalar function U(x,y,z)=frac{n^2}{2}(x^2+y^2)+frac{mu_1}{r_1}+frac{mu_2}{r_2}

[Eq.1] ddot x - 2ndot y = frac{delta U}{delta x}

[Eq.2] ddot y + 2ndot x = frac{delta U}{delta y}

[Eq.3] ddot z = frac{delta U}{delta z}

Multiplying [Eq.1] , [Eq.2] and [Eq.3] par dot x, dot y and dot z respectively and adding all three yields

dot x ddot x+dot y ddot y +dot z ddot z = frac{delta U}{delta x}dot x + frac{delta U}{delta y}dot y + frac{delta U}{delta z}dot z = frac{dU}{dt}

Integrating yields

dot x^2+dot y^2+dot z^2=2U-C_J

where CJ is the constant of integration.

The left side represents the square of the velocity v,!^2 of the test particle in the co-rotating system.

1This co-ordinates system is a non-inertial which explains the appearance of terms related to centrifugal and Coriolis accelarations.

See also

*Rotating reference frame

References

Carl D. Murray and Stanley F. Dermot "Solar System Dynamics" [Cambridge, England: Cambridge University Press, 1999] , pages 68-71. (ISBN 0-521-57597-4)

[1] Original research article:Jacobi, Carl Gustav Jacob (1836) "Sur le movement d'un point et sur un cas particulier du problème des trois corps," "Comptes Rendus de l'Académie des Sciences de Paris", vol. 3, pages 59-61. (Available on-line at: http://visualiseur.bnf.fr/StatutConsulter?N=VERESS3-1201640420309&B=1&E=PDF&O=NUMM-90217 .)


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • intégral — intégral, ale, aux [ ɛ̃tegral, o ] adj. et n. f. • 1640 ; parties intégralesXIVe; lat. integralis, de integer « entier » I ♦ Cour. Qui n est l objet d aucune diminution, d aucune restriction. ⇒ 1. complet, entier. Remboursement intégral.… …   Encyclopédie Universelle

  • Integral de movimiento — Una integral del movimiento o constante del movimiento de un problema mecánico es una función de la posición y las velocidades (o equivalentemente de las coordenadas generalizadas y sus momentos conjugados) que es constante a lo largo de una… …   Wikipedia Español

  • Integral elíptica de primera especie — Una integral elíptica de primera especie es un caso particular de la integral elíptica. Existen integrales elípticas de primera especie, completas e incompletas. Las primeras dependen de una sola variable y las segundas dependen de dos variables …   Wikipedia Español

  • Jacobi's elliptic functions — In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that have historical importance with also many features that show up important structure, and have direct relevance to some… …   Wikipedia

  • Jacobi-Determinante — Die Funktionaldeterminante oder Jacobi Determinante ist eine mathematische Größe, die in der mehrdimensionalen Integralrechnung, also der Berechnung von Oberflächen und Volumenintegralen, eine Rolle spielt. Insbesondere findet sie in der… …   Deutsch Wikipedia

  • Carl Gustav Jacob Jacobi — Carl Jacobi Carl Gustav Jacob Jacobi Born December 10, 1804(1804 …   Wikipedia

  • Elliptic integral — In integral calculus, elliptic integrals originally arose in connection with the problem of giving the arc length of an ellipse. They were first studied by Giulio Fagnano and Leonhard Euler. Modern mathematics defines an elliptic integral as any… …   Wikipedia

  • Ecuación de Hamilton-Jacobi — Saltar a navegación, búsqueda La ecuación de Hamilton Jacobi es una ecuación diferencial en derivadas parciales usada en mecánica clásica y mecánica relativista que permite encontrar las ecuaciones de evolución temporal o de movimiento . La… …   Wikipedia Español

  • Hamilton–Jacobi equation — In physics, the Hamilton–Jacobi equation (HJE) is a reformulation of classical mechanics and, thus, equivalent to other formulations such as Newton s laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is… …   Wikipedia

  • Función elíptica de Jacobi — Las funciones elípticas de Jacobi son funciones definidas a partir de la integral elíptica de primera especie y aparecen en diversos contextos, deben su nombre al matemático alemán Carl Gustav Jakob Jacobi. En física aparecen por ejemplo las… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”