Non-Hausdorff manifold

Non-Hausdorff manifold

In mathematics, it is a usual axiom of a manifold to be a Hausdorff space, and this is assumed throughout geometry and topology: "manifold" means "(second countable) Hausdorff manifold".

In general topology, this axiom is relaxed, and one studies non-Hausdorff manifolds: spaces locally homeomorphic to Euclidean space, but not necessarily Hausdorff.

Contents

Examples

Line with two origins

The most familiar non-Hausdorff manifold is the line with two origins, or bug-eyed line.

This is the quotient space of two copies of the real line

R × {a} and R × {b}

with the equivalence relation

(x,a) \sim (x,b)\text{ if }x \neq 0.\;

This space has a single point for each nonzero real number r and two points 0a and 0b. In this space all neighbourhoods of 0a intersect all neighbourhoods of 0b, so it is non-Hausdorff.

Further, the line with two origins does not have the homotopy type of a CW-complex, or of any Hausdorff space[1].

Branching line

Similar to the line with two origins is the branching line.

This is the quotient space of two copies of the real line

R × {a} and R × {b}

with the equivalence relation

(x,a) \sim (x,b)\text{ if }x < 0.\;

This space has a single point for each negative real number r and two points xa,xb for every non-negative number: it has a "fork" at zero.

Etale space

The etale space of a sheaf, such as the sheaf of continuous real functions over a manifold, is a manifold that is often non-Hausdorff. (The etale space is Hausdorff if it is a sheaf of functions with some sort of analytic continuation property.)[citation needed]

Notes

  1. ^ Gabard, pp. 4-5

References

  • Gabard, Alexandre, A separable manifold failing to have the homotopy type of a CW-complex, arXiv:math.GT/0609665v1 

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… …   Wikipedia

  • Hausdorff space — In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a topological space in which distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space …   Wikipedia

  • Topological manifold — In mathematics, a topological manifold is a Hausdorff topological space which looks locally like Euclidean space in a sense defined below. Topological manifolds form an important class of topological spaces with applications throughout… …   Wikipedia

  • Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… …   Wikipedia

  • Gromov–Hausdorff convergence — Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff convergence. Gromov–Hausdorff distanceGromov–Hausdorff distance measures how far two …   Wikipedia

  • Riemannian manifold — In Riemannian geometry, a Riemannian manifold ( M , g ) (with Riemannian metric g ) is a real differentiable manifold M in which each tangent space is equipped with an inner product g in a manner which varies smoothly from point to point. The… …   Wikipedia

  • Sub-Riemannian manifold — In mathematics, a sub Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub Riemannian manifold,you are allowed to go only along curves tangent to so called horizontal… …   Wikipedia

  • Banach manifold — In mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below) …   Wikipedia

  • Collapsing manifold — For the concept in homotopy, see collapse (topology). In Riemannian geometry, a collapsing or collapsed manifold is an n dimensional manifold M that admits a sequence of Riemannian metrics gn, such that as n goes to infinity the manifold is close …   Wikipedia

  • Metric Structures for Riemannian and Non-Riemannian Spaces —   Author(s) Misha Gromov …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”