Demographic gravitation

Demographic gravitation

Demographic gravitation is a concept of "social physics"[1], introduced by Princeton University astrophysicist John Quincy Stewart[2] in 1947[3]. It is an attempt to use equations and notions of classical physics - such as gravity - to seek simplified insights and even laws of demographic behaviour for large numbers of human beings. A basic conception within it is that large numbers of people, in a city for example, actually behave as an attractive force for other people to migrate there, hence the notion of demographic gravitation. It has been related[4][5] to W. J. Reilly's law of retail gravitation[6][7], George Kingsley Zipf's Demographic Energy[8], and to the theory of Trip distribution through gravity models Trip distribution#Gravity model.

Writing in the journal Sociometry, Stewart set out an "agenda for social physics." Comparing the microscopic versus macroscopic viewpoints in the methodology of formulating physical laws, he made an analogy with the social sciences:

Fortunately for physics, the macroscopic approach was the commonsense one, and the early investigators - Boyle, Charles, Gay-Lussac - were able to establish the laws of gases. The situation with respect to "social physics" is reversed... If Robert Boyle had taken the attitude of many social scientists, he would not have been willing to measure the pressure and volume of a sample of air until an encyclopedic history of its molecules had been compiled. Boyle did not even know that air contained argon and helium but he found a very important law. [3]

Stewart proceeded to apply Newtonian formulae of gravitation to that of "the average interrelations of people" on a wide geographic scale, elucidating such notions as "the demographic force of attraction," demographic energy, force, potential and gradient.[3]

Key equations

The following are some of the key equations (with plain English paraphrases) from his article in sociometry:

F = \frac{N_1 \cdot N_2}{d^2}

(Demographic Force = (population 1 multiplied by population 2) divided by (distance squared))

E = \frac{N_1 \cdot N_2}{d}

(Demographic Energy = (population 1, multiplied by population 2) divided by distance; this is also Zipf's determinant

 PN_1 = \frac{N_2}{d}

(Demographic Potential of population at point 1 = population at point 2, divided by distance)

P = \frac{N}{d}

(Demographic Potential in general = population divided by distance, in persons per mile)

\text{Gradient} = \frac{N}{m^2}

(Demographic Gradient = persons per (i.e. divided by) square mile)

The potential of population at any point is equivalent to the measure of proximity of people at that point (this also has relevance to Georgist economic rent theory Economic rent#Land rent).

For comparison, Reilly's retail gravity equilibrium (or Balance/Break Point) is paraphrased as:

\frac{N_1}{d^2} = \frac{N_2}{d^2}

(Population 1 divided by (distance to balance, squared) = Population 2 / (distance to balance, squared))

See also

  • John Quincy Stewart, 1947. Empirical Mathematical Rules Concerning the Distribution and Equilibrium of Population, Geographical Review, Vol 37, 461–486.
  • John Quincy Stewart, 1950. Potential of Population and its Relationship to Marketing. In: Theory in Marketing , R. Cox and W. Alderson (Eds) ( Richard D. Irwin, Inc., Homewood, Illinois).
  • Zipf, G. K., 1946. The P1 P2/D Hypothesis: On the Intercity Movement of Persons. American Sociological Review, vol. 11, Oct
  • Zipf, G. K., 1949. Human Behaviour and the Principle of Least Effort. Massachusetts

References

  1. ^ Stewart, J.Q. "The Development of Social Physics", American Journal of Physics, Vol 18 (1950), pp. 239-253
  2. ^ Vecchia, Karla J., John Q. Stewart Papers (C0571)1907-1970s A Finding Aid, Manuscripts Division Department of Rare Books and Special Collections, Princeton University Library, 2004 [1]
  3. ^ a b c Stewart, John Q., "Demographic Gravitation: Evidence and Applications," Sociometry, Vol. 11, No. 1/2. (Feb. - May, 1948), pp. 31-58. [2]
  4. ^ Reiser, Oliver L. "Technology and Society" in Kostelanetz, Richard (Ed.), Beyond Left and Right: Radical Thought for Our Times p. 85, William Morrow & Co., New York, 1968. [3]
  5. ^ Higgins, Benjamin, and Savoie, David J. "Regional development theories and their application", pp.151-155, Transaction Publishers, New Jersey, 1997. [4]
  6. ^ Reilly, W.J. “Methods for the Study of Retail Relationships” University of Texas, Bulletin No 2944, November 1929.
  7. ^ Reilly, W.J. "The Law of Retail Gravitation", New York, 1931.
  8. ^ Stewart, J.Q. “Demographic Gravitation: Evidence and Application” Sociometry, Vol. XI, Feb.-May 1948, pp 31-58.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Gravitation (manga) — Gravitation Cover of the first volume of Gravitation as published by Gentosha グラビテーション (Gurabitēshon) …   Wikipedia

  • Reilly's law of retail gravitation — In economics, Reilly s law of retail gravitation states that larger cities will have larger spheres of influence than smaller ones, meaning people travel further to reach a larger city.The law presumes the geography of the area is flat without… …   Wikipedia

  • Trip distribution — (or destination choice or zonal interchange analysis), is the second component (after trip generation, but before mode choice and route assignment) in the traditional four step transportation forecasting model. This step matches tripmakers’… …   Wikipedia

  • John Quincy Stewart — (September 10 1894 ndash; March 19 1972) was an American astrophysicist.He obtained his Ph.D. in physics from Princeton University in 1919. He taught astrophysics at Princeton from 1921 until he retired in 1963.Stewart was a civilian aeronautical …   Wikipedia

  • George Kingsley Zipf — (pronEng|ˈzɪf), (1902 ndash;1950), was an American linguist and philologist who studied statistical occurrences in different languages. Zipf worked at Harvard University. He worked with Chinese languages and demographics, and much of his effort… …   Wikipedia

  • Europe, history of — Introduction       history of European peoples and cultures from prehistoric times to the present. Europe is a more ambiguous term than most geographic expressions. Its etymology is doubtful, as is the physical extent of the area it designates.… …   Universalium

  • Overpopulation — Graph of human population from 10,000 BC–2000 AD showing the unprecedented population growth since the 19th century Overpopulation is a condition where an organism s numbers exceed the carrying capacity of its habitat. The term often refers to… …   Wikipedia

  • Germany — /jerr meuh nee/, n. a republic in central Europe: after World War II divided into four zones, British, French, U.S., and Soviet, and in 1949 into East Germany and West Germany; East and West Germany were reunited in 1990. 84,068,216; 137,852 sq.… …   Universalium

  • Dōjinshi — Part of a series on Anime and Manga …   Wikipedia

  • Heroic Age (anime) — Infobox animanga/Header name = Heroic Age caption = ja name = ヒロイック・エイジ ja name trans = Hiroikku Eiji genre = Mecha, Adventure, RomanceInfobox animanga/Anime director = Toshimasa Suzuki studio = XEBEC network = flagicon|Japan TV Tokyo, TV… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”