Kuratowski convergence

Kuratowski convergence

In mathematics, Kuratowski convergence is a notion of convergence for sequences (or, more generally, nets) of compact subsets of metric spaces, named after the Polish mathematician Kazimierz Kuratowski. Intuitively, the Kuratowski limit of a sequence of sets is where the sets "accumulate".

Definitions

Let ("X", "d") be a metric space. For any point "x" ∈ "X" and any non-empty compact subset "A" ⊆ "X", let

:d(x, A) = inf_{a in A} d(x, a).

For any sequence of such subsets "A""n" ⊆ "X", "n" ∈ N, the Kuratowski limit inferior (or lower closed limit) of "A""n" as "n" → ∞ is

:mathop{mathrm{Li_{n o infty} A_{n} = left{ x in X left| limsup_{n o infty} d(x, A_{n}) = 0 ight. ight}::= left{ x in X left| egin{matrix} mbox{for all open neighbourhoods } U mbox{ of } x, \ U cap A_{n} eq emptyset mbox{ for large enough } n end{matrix} ight. ight};

the Kuratowski limit superior (or upper closed limit) of "A""n" as "n" → ∞ is

:mathop{mathrm{Ls_{n o infty} A_{n} = left{ x in X left| liminf_{n o infty} d(x, A_{n}) = 0 ight. ight}::= left{ x in X left| egin{matrix} mbox{for all open neighbourhoods } U mbox{ of } x, \ U cap A_{n} eq emptyset mbox{ for infinitely many } n end{matrix} ight. ight}.

If the Kuratowski limits inferior and superior agree (i.e. are the same subset of "X"), then their common value is called the Kuratowski limit of the sets "A""n" as "n" → ∞ and denoted Lt"n"→∞"A""n".

The definitions for a general net of compact subsets of "X" go through "mutatis mutandis".

Properties

* Although it may seem counter-intuitive that the Kuratowski limit inferior involves the limit superior of the distances, and "vice versa", the nomenclature becomes more obvious when one sees that, for any sequence of sets,

::mathop{mathrm{Li_{n o infty} A_{n} subseteq mathop{mathrm{Ls_{n o infty} A_{n}.

: I.e. the limit inferior is the smaller set and the limit superior the larger one.

* The terms upper and lower closed limit stem from the fact that Li"n"→∞"A""n" and Ls"n"→∞"A""n" are always closed sets in the metric topology on ("X", "d").

Examples

* Let "A""n" be the zero set of sin("nx") as a function of "x" from R to itself

::A_{n} = ig{ x in mathbf{R} ig| sin (n x) = 0 ig}.

: Then "A""n" converges in the Kuratowski sense to the whole real line R.

References

* cite book
last = Kuratowski
first = Kazimierz
authorlink = Kazimierz Kuratowski
title = Topology. Volumes I and II
series = New edition, revised and augmented. Translated from the French by J. Jaworowski
publisher = Academic Press
location = New York
year = 1966
pages = xx+560
MathSciNet|id=0217751


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Kazimierz Kuratowski — TOCleftKazimierz Kuratowski (Warsaw, February 2, 1896 ndash;June 18, 1980) was a Polish mathematician and logician.BiographyKuratowski was born a subject of Tsarist Russia. In 1913, he enrolled in an engineering course at the University of… …   Wikipedia

  • List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) …   Wikipedia

  • Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… …   Wikipedia

  • Characterizations of the category of topological spaces — In mathematics, a topological space is usually defined in terms of open sets. However, there are many equivalent characterizations of the category of topological spaces. Each of these definitions provides a new way of thinking about topological… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Lemme De Zorn — En mathématiques, Le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme qu un ensemble ordonné tel que toute chaîne (sous ensemble totalement ordonné) possède un… …   Wikipédia en Français

  • Lemme de zorn — En mathématiques, Le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme qu un ensemble ordonné tel que toute chaîne (sous ensemble totalement ordonné) possède un… …   Wikipédia en Français

  • Lemme de Zorn — En mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski Zorn), est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous ensemble totalement ordonné) possède… …   Wikipédia en Français

  • Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… …   Wikipedia

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”