István Fáry

István Fáry

Infobox_Scientist
name = István Fáry


image_width =
caption =
birth_date = birth date|1922|6|30|mf=y
birth_place = Gyula, Hungary
death_date = Death date|1984|11|2|mf=y
death_place = El Cerrito, California
residence = United States
nationality =
field = Mathematics
work_institution = University of California, Berkeley
alma_mater = Sorbonne
doctoral_advisor =
doctoral_students =
known_for = Knot Theory
prizes =
religion =
footnotes =

István Fáry (30 June 19222 November 1984) was a Hungarian-born mathematician known for his work in geometry and algebraic topology [ [http://content.cdlib.org/xtf/view?docId=hb4d5nb20m&doc.view=frames&chunk.id=div00051&toc.depth=1&toc.id=] Biography from the "California Digital Library"] . He proved Fáry's theorem in 1948, and the Fary-Milnor theorem in 1949.

Notes

References

*citation
last = Fáry | first = István
url = http://www.numdam.org/item?id=BSMF_1949__77__128_0
title = Sur la courbure totale d’une courbe gauche faisant un nœud
journal = Bulletin de la Société Mathématique de France
volume = 77
year = 1949
pages = 128–138
.

* citation
last = Fáry | first = István
title = On straight-line representation of planar graphs
journal = Acta Sci. Math. (Szeged)
volume = 11
year = 1948
pages = 229–233
id = MathSciNet | id = 0026311
.

External links

* [http://owpdb.mfo.de/search?term=fary Photos from the Oberwolfach Photo Collection]


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Fáry's theorem — states that any simple planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be …   Wikipedia

  • Fary — may refer to one of the following:*El Fary, a Spanish singer and actor. *István Fáry, a Hungarian mathematician, the namesake of the Fáry s theorem *John G. Fary, a U.S. Representative from Illinois. *Fary Faye, a football forward from Senegal …   Wikipedia

  • Istvan — is a Hungarian language equivalent of the name Stephen. It may refer to:PeopleMonarchs, Politicians Public Figures* Stephen I of Hungary * István Pásztor * István Széchenyi * István Tisza * István Bethlen * István Werbőczy * István Dobi * István… …   Wikipedia

  • Fary-Milnor theorem — In mathematics, the Fary Milnor theorem in knot theory states that for any knot K in R3, if the total curvature :oint K kappa ,ds leq 4pi then K is an unknot, where kappa is the curvature (it is possible for an unknotted curve to have large total …   Wikipedia

  • Théorème de Fary-Milnor —  Ne doit pas être confondu avec le théorème de Fáry (en) sur les graphes planaires. En théorie des nœuds, le théorème de Fary Milnor dit qu en dimension 3, une courbe fermée simple lisse dont la courbure totale est as …   Wikipédia en Français

  • John Milnor — John Willard Milnor, né le 20 février 1931, est un mathématicien connu pour son travail en topologie différentielle et en K théorie. Sommaire 1 Biographie …   Wikipédia en Français

  • John Willard Milnor — (* 20. Februar 1931 in Orange, New Jersey) ist ein US amerikanischer Mathematiker. Derzeit lehrt er Mathematik als Professor an der State University of New York at Stony Brook in New York und ist Co Director am dortigen Institute for Mathematical …   Deutsch Wikipedia

  • Теорема Фари — Милнора — теорема теории узлов, одного из разделов математики. Пусть узел в трёхмерном евклидовом пространстве и его кривизна в точке . Тогда если …   Википедия

  • Теорема Фари — Милнора теорема теории узлов, одного из разделов математики. Пусть узел в трёхмерном евклидовом пространстве и его кривизна в точке . Тогда если то узел …   Википедия

  • List of mathematicians (F) — NOTOC Faa * Faà di Bruno, Francesco (Italy, 1825 1888) * Faber, Vance (USA, 1944 ) * Fabri, Honoré (France, 1607 1688) * Faddeev, Ludvig (Russia/Soviet Union, 1934 ) * di Fagnano, Giulio Carlo de Toschi (Italy, 1682 1766) * de la Faille, Jean… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”