Stieltjes constants

Stieltjes constants

In mathematics, the Stieltjes constants are the numbers gamma_k that occur in the Laurent series expansion of the Riemann zeta function:

:zeta(s)=frac{1}{s-1}+sum_{n=0}^infty frac{(-1)^n}{n!} gamma_n ; (s-1)^n.

The Stieltjes constants are given by the limit

: gamma_n = lim_{m ightarrow infty}{left(left(sum_{k = 1}^m frac{(ln k)^n}{k} ight) - frac{(ln m)^{n+1{n+1} ight)}.

(In the case "n" = 0, the first summand requires evaluation of 00, which is taken to be 1.)

Cauchy's differentiation formula leads the integral representation

:gamma_n = frac{(-1)^n n!}{2pi} int_0^{2pi} e^{-nix} zetaleft(e^{ix}+1 ight) dx.

The zero'th constant gamma_0 = gamma = 0.577... is known as the Euler-Mascheroni constant.

The first few values are:

:::

More generally, one can define Stieltjes constants gamma_k(q) that occur in the Laurent series expansion of the Hurwitz zeta function:

:zeta(s,q)=frac{1}{s-1}+sum_{n=0}^infty frac{(-1)^n}{n!} gamma_n(q) ; (s-1)^n.

Here "q" is a complex number with Re("q")>0. Since the Hurwitz zeta function is a generalization of the Riemann zeta function, we have:gamma_n(1)=gamma_n.;

ee also

* Euler-Mascheroni constant

References

*

* Plouffe's inverter. [http://pi.lacim.uqam.ca/piDATA/stieltjesgamma.txt Stieltjes Constants, from 0 to 78, 256 digits each]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Stieltjes-Konstanten — Die Stieltjes Konstanten γn sind eine Folge reeller Zahlen, die durch folgenden Grenzwert definiert sind: wobei γ0 die Eulersche Konstante γ ist. Es wird vermutet, dass die γn irrational sind. Ein Beweis dafür konnte bislang nicht erbracht werden …   Deutsch Wikipedia

  • Stieltjes moment problem — In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions that a sequence { mu; n , : n = 0, 1, 2, ... } be of the form:mu n=int 0^infty x^n,dF(x),for some nondecreasing function …   Wikipedia

  • Constantes de Stieltjes — Thomas Joannes Stieltjes En mathématique, les constantes de Stieltjes (nommées d après le mathématicien néerlandais Thomas Joannes Stieltjes) sont les nombres qui interviennent dans le développement en série de Laurent de la fonction zêta de… …   Wikipédia en Français

  • Euler–Mascheroni constant — Euler s constant redirects here. For the base of the natural logarithm, e ≈ 2.718..., see e (mathematical constant). The area of the blue region is equal to the Euler–Mascheroni constant. List of numbers – Irrational and suspected irrational… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Gauss–Kuzmin–Wirsing operator — GKW redirects here. For the Indian engineering firm see Guest Keen Williams.In mathematics, the Gauss–Kuzmin–Wirsing operator occurs in the study of continued fractions; it is also related to the Riemann zeta function. IntroductionThe… …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Дзета-функция Гурвица — В математике Дзета функция Гурвица, названная в честь Адольфа Гурвица,  это одна из многочисленных дзета функций, являющихся обобщениями дзета функции Римана. Формально она может быть определена степенным рядом для комплексных аргументов s,… …   Википедия

  • Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms The Fourier transform is a mathematical operation that decomposes a function into its constituent… …   Wikipedia

  • Itō calculus — Itō calculus, named after Kiyoshi Itō, extends the methods of calculus to stochastic processes such as Brownian motion (Wiener process). It has important applications in mathematical finance and stochastic differential equations.The central… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”