Vantieghems theorem

Vantieghems theorem

In number theory, Vantieghems theorem is a primality criterion. It states, that a natural number "n" is prime, if and only if

: prod_{1 leq k leq n-1} left( 2^k - 1 ight) equiv n mod left( 2^n - 1 ight).

Similarly, "n" is prime, if and only if the following congruence for polynomials in "X" holds:

: prod_{1 leq k leq n-1} left( X^k - 1 ight) equiv n- left( X^n - 1 ight)/left( X - 1 ight) mod left( X^n - 1 ight)

or:

: prod_{1 leq k leq n-1} left( X^k - 1 ight) equiv n mod left( X^n - 1 ight)/left( X - 1 ight).

References

* L. J. P. Kilford, "A generalization of a congruence due to Vantieghem only holding for primes", 2004, arxiv|math|0402128. An article with proof and generalizations.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”