Published in 2002 by the CIE Technical Committee 8-01 ("Colour Appearance Modelling for Color Management Systems"), as of 2008 CIECAM02 is the most recent color appearance model ratified by the CIE, and the successor of CIECAM97s.cite journal|journal=Color Research & Applications|title=A Revision of CIECAM97s for Practical Applications|first=Mark D.|last=Fairchild|url=|publisher=Wiley Interscience|volume=25|issue=4|pages=260&ndash;266|month=August|year=2000|id=doi| id=10.1002/1520-6378(200008)25:4%3C260::AID-COL6%3E3.0.CO;2-9| label=10.1002/1520-6378(200008)25:4<260::AID-COL6>3.0.CO;2-9| quote=The CIECAM97s model was adopted by the CIE in 1997 for colour imaging applications. It includes forward and reverse modes. Some problems in using this model were found in recent field trials. This article suggests revision to the model in two respects: (a) to make the lightness (J) zero when the Y tristimulus value is zero, under all surround conditions; (b) to modify the chromatic induction factor (Nc) from 1.10 to 0.95 for the dim surround condition. To avoid confusion, it is suggested that the revised version of the model be designated CAM97s2. The article also describes an alternative mode to achieve a more nearly exact reversibility between the forward and reverse modes.]

The two major parts of the model are its chromatic adaptation transform, CIECAT02, and its equations for calculating mathematical correlates for the six technically-defined dimensions of color appearance: brightness (luminance), lightness, colorfulness, chroma, saturation, and hue.

CIECAM02 takes for its input the tristimulus values of the stimulus, the tristimulus values of an adapting white point, adapting background, and surround luminance information, and whether or not observers are discounting the illuminant (color constancy is in effect). The model can be used to predict these appearance attributes or, with forward and reverse implementations for distinct viewing conditions, to compute corresponding colors.

CIECAM02 is used in Windows Vista's Windows Color System. [cite web|url=|title=ICC Profiles, Color Appearance Modeling, and the Microsoft Windows Color System|author=ICC]

Viewing conditions

The inner circle is the "stimulus", from which the tristimulus values should be measured in CIE XYZ using the 2° standard observer. The intermediate circle is the "proximal field", extending out another 2°. The outer circle is the "background", reaching out to 10°, from which the relative luminance (Yb) need be measured. If the proximal field is the same color as the background, the background is considered to be adjacent to the stimulus. Beyond the circles which comprise the "display field" ("display area", "viewing area") is the "surround field" (or "peripheral area"), which can be considered to be the entire room. The totality of the proximal field, background, and surround is called the "adapting field" (the field of view that supports adaptation—extends to the limit of vision).cite book|title=Colorimetry: Understanding the CIE System|chapter=The Future of Colorimetry in the CIE: Color Appearance|publisher=Wiley Interscience|first=János|last=Schanda|isbn=978-0-470-04904-4|page=359|year=2007]

When referring to the literature, it is also useful to be aware of the difference between the terms "adopted white point" (the computational white point) and the "adapted white point" (the observer white point). [cite book|url= |title=Computational Colour Science Using MATLAB|first=Stephen|last=Westland|coauthors=Ripamonti, Caterina|publisher=John Wiley & Sons|isbn=0-470-84562-7|year=2004] The distinction may be important in mixed mode illumination, where psychophysical phenomenon come into play. This is a subject of research.

Parameter decision table

CIECAM02 defines three surround(ing)s—average, dim, dark—with associated parameters defined here for reference in the rest of this article:cite conference|title=The CIECAM02 Color Appearance Model|booktitle=IS&T/SID Tenth Color Imaging Conference|last=Moroney|first=Nathan|coauthors=Fairchild, Mark D.; Hunt, Robert W.G.; Li, Changjun; Luo, M. Ronnier; Newman, Todd|url=|location=Scottsdale, Arizona|id=ISBN 0-89208-241-0|year=2002|month=November 12|publisher=The Society for Imaging Science and Technology]

* S_R=L_{sw}/L_{dw}: ratio of the absolute luminance of the "reference white" (white point) measured in the surround field to the display area. The 0.2 coefficient derives from the "gray world" assumption (~18%-20% reflectivity). It tests whether the surround luminance is darker or brighter than medium gray.
* F: factor determining degree of adaptation
* c: impact of surrounding
* Nc: chromatic induction factor

For intermediate conditions, these values can be linearly interpolated.

The absolute luminance of the adapting field, which is a quantity that will be needed later, should be measured with a photometer. If one is not available, it can be calculated using a reference white:

L_A=frac{E_w}{pi} frac{Y_b}{Y_w} = frac{L_W Y_b}{Y_w}

where Yb is the relative luminance of background, the E_w=pi L_W is the illuminance of the reference white in lux, LW is the absolute luminance of the reference white in cd/m2, and Yw is the relative luminance of the reference white in the adapting field. If unknown, the adapting field can be assumed to have average reflectance ("gray world" assumption): L_A=L_W/5.

"Note": Care should be taken not to confuse LW, the absolute luminance of the reference white in cd/m2, and Lw the red cone response in the LMS color space.

Chromatic adaptation


# Convert to the "spectrally sharpened" CAT02 LMS space to prepare for adaptation. "Spectral sharpening" is the transformation of the tristimulus values into new values that would have resulted from a sharper, more concentrated set of spectral sensitivities. It is argued that this aids color constancy, especially in the blue region.
# Perform chromatic adaptation using CAT02 (also known as the "modified CMCCAT2000 transform").
# Convert to an LMS space closer to the cone fundamentals. It is argued that predicting perceptual attribute correlates is best done in such spaces.
# Perform post-adaptation cone response compression.


Given a set of tristimulus values in XYZ, the corresponding LMS values can be determined by the M_{CAT02} transformation matrix (calculated using the CIE 1931 2° standard colorimetric observer). The sample color in the "test" illuminant is:

egin{bmatrix}L\M\Send{bmatrix}=egin{bmatrix}0.7328 & 0.4296 & -0.1624\-0.7036 & 1.6975 & 0.0061\0.0030 & 0.0136 & 0.9834end{bmatrix}egin{bmatrix}X\Y\Zend{bmatrix}

Once in LMS, the white point can be adapted to the desired degree by choosing the parameter D. For the general CAT02, the "corresponding" color in the reference illuminant is:

egin{bmatrix}L_c\M_c\S_cend{bmatrix}=egin{bmatrix}alpha frac{L_{wr{L_w} D + 1-D & 0 & 0\0 & alpha frac{M_{wr{M_w} D + 1-D & 0\0 & 0 & alpha frac{S_{wr{S_w} D + 1-D end{bmatrix}egin{bmatrix}L\M\Send{bmatrix}

where the alpha = Y_w/Y_{wr} factor accounts for the two illuminants having the same chromaticity but different reference whites. [cite journal|title=Chromatic Adaptation Transforms|first=Robert W. G.|last=Hunt|coauthors=Changjun Li, M. Ronnier Luo|publisher=Wiley Interscience|doi=10.1002/col.20085|journal=Color Research & Applications|year=2005|month=February|volume=30|number=1|quote=Chromatic adaptation transforms (CATs) have appeared in different forms. The reasons for these forms, and the relationships between them, are described. The factors governing which type of CAT should be used in different applications are explained|pages=69] The subscripts indicate the cone response for white under the test (w) and reference illuminant (wr). The degree of adaptation (discounting) D can be set to zero for no adaptation (stimulus is considered self-luminous) and unity for complete adaptation (color constancy). In practice, it ranges from 0.65 to 1.0, as can be seen from the diagram. Intermediate values can be calculated by:

D=F left( 1-frac{1}{3.6} e^frac{L_A+42}{-92} ight)

where surround F is as defined above and L_A is the "adapting field luminance" in cd/m2.

In CIECAM02, the reference illuminant has equal energy L_{wr}=M_{wr}=S_{wr}=100) and the reference white is the "perfect reflecting diffuser" (i.e., unity reflectance, and Y_{wr}=100) hence:

L_c=left( frac{Y_w}{L_w} D + 1-D ight) L

M_c=left( frac{Y_w}{M_w} D + 1-D ight) M

S_c=left( frac{Y_w}{S_w} D + 1-D ight) S

Furthermore, if the reference white in both illuminants have the Y tristimulus value (Y_{wr}=Y_{w}) then:

L_c=left( frac{L_{wr{L_w} D + 1-D ight) L

M_c=left( frac{M_{wr{M_w} D + 1-D ight) M

S_c=left( frac{S_{wr{S_w} D + 1-D ight) S


After adaptation, the cone responses are converted to the Hunt-Pointer-Estévez space by going to XYZ and back:

egin{bmatrix}L'\M'\S'end{bmatrix}=M_H egin{bmatrix}X_c\Y_c\Z_cend{bmatrix}=M_H M_{CAT02}^{-1}egin{bmatrix}L_c\M_c\S_cend{bmatrix}

Finally, the response is compressed based on the generalized Michaelis-Menten equation (as depicted aside):

k=left( 5 L_A + 1 ight)^{-1}

F_L = 0.2 k^4 left( 5 L_A ight) + 0.1 (1-k^4)^2 left( 5 L_A ight) ^{1/3} (luminance level adaptation factor)

L'_a=frac{400 left(F_L L'/100 ight)^{0.42{27.13+left(F_L L'/100 ight)^{0.42+0.1

M'_a=frac{400 left(F_L M'/100 ight)^{0.42{27.13+left(F_L M'/100 ight)^{0.42+0.1

S'_a=frac{400 left(F_L S'/100 ight)^{0.42{27.13+left(F_L S'/100 ight)^{0.42+0.1

As previously mentioned, if the luminance level of the background is unknown, it can estimated from the absolute luminance of the white point as L_A=L_W/5 using the "medium gray" assumption. (The expression for FL is given in terms of 5LA for convenience.) In photopic conditions, the luminance level adaptation factor (FL) is proportional to the cube root of the luminance of the adapting field (LA). In scotopic conditions, it is proportional to LA (meaning no luminance level adaptation). The photopic threshold is roughly L_W=1 (see FL-LA graph above).

Appearance correlates

CIECAM02 defines correlates for yellow-blue, red-green, brightness, and colorfulness. Let us make some preliminary definitions.

C_1=L'_a - M'_a, C_2=M'_a-S'_a, C_3=S'_a-L'_a

The correlate for red-green (a) is the magnitude of the departure of C1 from a particular yellow, C_2/11:


The correlate for yellow-blue (b) is based on the mean of the magnitude of the departures of C1 from a particular red, C2 and particular green, C3:

b=frac{1}{2} left( C_2 - C_1 + C_1 - C_3 ight) /4.5=frac{1}{9}left( L'_a + M'_a - 2S'_a ight)

The 4.5 factor accounts for the fact that there are fewer cones at shorter wavelengths (the eye is less sensitive to blue). The order of the terms is such that b is positive for yellowish colors (rather than blueish).

The hue angle (h) can be found by converting the rectangular coordinate (a,b) into polar coordinates: h=angle (a,b), (0. To calculate the eccentricity (et) and hue composition (H), determine which quadrant the hue is in with the aid of the following table. Choose i such that h_i leq h' < h_{i+1}, where h'=h if h>h1 and h'=h+360^circ otherwise.

e_t=frac{1}{4} left [ cosleft(frac{h'pi}{180} + 2 ight)+3.8 ight]

(This is not exactly the same as the eccentricity factor given in the table.)

H=H_i+frac{100 (h'-h_i)/e_i }{(h'-h_i)/e_i+(h_{i+1}-h')/e_{i+1

Calculate the achromatic response A:


where N_{bb}=0.725 n^{-0.2}, z=1.48 + sqrt{n}, and n=Y_b/Y_w

The correlate of lightness is

J=100 left( frac{A}{A_w} ight)^{c cdot z}

The correlate of brightness is

Q=frac{4}{c} sqrt frac{J}{100} (A_w+4)F_L^{0.25}

t=frac{ 50000/13 cdot N_c cdot N_{cb} cdot e_t sqrt{a^2+b^2} } {R_a'+G_a'+(21/20)B_a'}

The correlate of chroma is

C=t^{0.9} sqrt frac{J}{100} (1.64-0.29^n)^{0.73}

The correlate of colorfulness is

M=C cdot F_L^{0.25}

The correlate of saturation is

s=100 sqrt frac{M}{Q}



External links

* [ Excel spreadsheet with forward and inverse examples] , by Eric Walowit and Grit O'Brien
* [ Experimental Implementation of the CIECAM02 Color Appearance Model in a Photoshop Compatible Plug-in] (Windows Only), by Cliff Rames.
* [ Notes on the CIECAM02 Colour Appearance Model] . Source code in C of the forward and reverse transforms, by Billy Biggs.
* [ CIECAM02 Java applet] , by Nathan Moroney

Wikimedia Foundation. 2010.

Поможем решить контрольную работу

Look at other dictionaries:

  • CIECAM02 — ist ein Farberscheinungsmodell (engl. Color Appearance Model) von der internationalen Beleuchtungskommission CIE (commission internationale de l éclairage) und der Nachfolger von CIECAM97. Es basiert auf dem CIECAM97 Modell und beinhaltet einige… …   Deutsch Wikipedia

  • CIECAM02 — Publié en 2002 par le commité technique 8 01 (Color Appearance Modelling for Color Management Systems) de la CIE, le modèle CIECAM02 est jusqu en 2008 le plus récent des modèles d apparence de la couleur (CAM : Colour Appearance Model) et le …   Wikipédia en Français

  • Colorfulness — Original image, with relatively muted colors L*C*h (CIELAB) chroma increased 50% …   Wikipedia

  • Cyan — Mittleres Cyan, sRGB #00DDFF (Farbcode: #00ddff) Cyan, sRGB #00FFFF (Farbcode: #00ffff) Cyan (auch in der Schreibung Zyan anzutreffen) bezeichnet allgemein einen am Übergang von Blau zu Grün liegenden Farbton. Der Begriff wird vor allem in… …   Deutsch Wikipedia

  • Munsell color system — The Munsell color system, showing: a circle of hues at value 5 chroma 6; the neutral values from 0 to 10; and the chromas of purple blue (5PB) at value 5. In colorimetry, the Munsell color system is a color space that specifies colors based on… …   Wikipedia

  • HSL and HSV — Fig. 1. HSL (a–d) and HSV (e–h). Above (a, e): cut away 3D models of each. Below: two dimensional plots showing two of a model’s three parameters at once, holding the other constant: cylindrical shells (b, f) of constant saturation, in this case… …   Wikipedia

  • Farbmodell — Alle Farben eines Farbmodells, die durch eine farbgebende Methode tatsächlich ausgegeben werden können, werden durch einen Farbraum repräsentiert. Jede „farbgebende Methode“ hat ihren eigenen Farbraum. Eine Darstellung aller Farborte eines… …   Deutsch Wikipedia

  • Farbraum — Farbmodell, hier nach HSL Alle Farben eines Farbmodells, die durch eine farbgebende Methode tatsächlich ausgegeben werden können, werden dreidimensional als Farbraum dargestellt. Jede farbgebende Methode hat ihren eigenen Farbraum. Eine… …   Deutsch Wikipedia

  • Farbraumsystem — Farbmodell Alle Farben eines Farbmodells, die durch eine farbgebende Methode tatsächlich ausgegeben werden können, werden durch einen Farbraum repräsentiert. Jede „farbgebende Methode“ hat ihren eigenen Farbraum. Eine Darstellung aller Farborte… …   Deutsch Wikipedia

  • Color — This article is about the perceptual property. For other uses, see Color (disambiguation). For usage of color on Wikipedia, see Wikipedia:Colors. Colored pencils Color or colour (see spelling differences) is the visual perceptual property… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”