Mandelstam variables

Mandelstam variables
In this diagram, two particles come in with momenta p1 and p2, they interact in some fashion, and then two particles with different momentum (p3 and p4) leave.

In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy, momentum, and angles of particles in a scattering process in a Lorentz-invariant fashion. They are used for scattering processes of two particles to two particles.

If the Minkowski Metric is chosen to be diag(1, − 1, − 1, − 1), the Mandelstam variables s,t,u are then defined by

  • s=(p_1+p_2)^2=(p_3+p_4)^2 \,
  • t=(p_1-p_3)^2=(p_2-p_4)^2 \,
  • u=(p_1-p_4)^2=(p_2-p_3)^2 \,

Where p1 and p2 are the four-momenta of the incoming particles and p3 and p4 are the four-momenta of the outgoing particles, and we are using Planck units (c=1).

s is also known as the square of the center-of-mass energy (invariant mass) and t is also known as the square of the momentum transfer.

Contents

Feynman diagrams

The letters s,t,u are also used in the terms s-channel, t-channel, u-channel. These channels represent different Feynman diagrams or different possible scattering events where the interaction involves the exchange of an intermediate particle whose squared four-momentum equals s,t,u, respectively.

S-channel.svg T-channel.svg U-channel.svg
s-channel t-channel u-channel

For example the s-channel corresponds to the particles 1,2 joining into an intermediate particle that eventually splits into 3,4: the s-channel is the only way that resonances and new unstable particles may be discovered provided their lifetimes are long enough that they are directly detectable. The t-channel represents the process in which the particle 1 emits the intermediate particle and becomes the final particle 3, while the particle 2 absorbs the intermediate particle and becomes 4. The u-channel is the t-channel with the role of the particles 3,4 interchanged.

The Mandelstam variables were first introduced by physicist Stanley Mandelstam in 1958.

Details

High-energy limit

In the relativistic limit rest mass can be neglected, so for example,

s=(p_1+p_2)^2=p_1^2+p_2^2+2 p_1 \cdot p_2 \approx 2 p_1 \cdot p_2 \,

because p_1^2 = m_1^2 and p_2^2 = m_2^2. It is reminded that by relativistic limit one means that the momentum (speed) is so large that in the relativistic energy-momentum equation the energy becomes essentially the momentum norm (e.g.  E^2= \mathbf{p} \cdot \mathbf{p} + {m_0}^2 \text{ becomes }  E^2 \approx  \mathbf{p} \cdot \mathbf{p} ).

In summary,

s \approx \, 2 p_1 \cdot p_2 \approx\,  2 p_3 \cdot p_4 \,
t \approx \,  -2 p_1 \cdot p_3 \approx \,  -2 p_2 \cdot p_4 \,
u \approx \,  -2 p_1 \cdot p_4 \approx \,  -2 p_3 \cdot p_2 \,

Addition of

Note that

s+t+u = m_1^2 + m_2^2 + m_3^2 + m_4^2 \,

where mi is the mass of particle i.

Proof

To prove this, we need to use two facts:

  • The square of a particle's four momentum is the square of its mass,
p_i^2 = m_i^2  \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (1) \,
  • And conservation of four-momentum,
p_1 + p_2 = p_3 + p_4 \,
p_1 = -p_2 + p_3 + p_4 \quad \quad \quad \quad \quad \quad \quad (2)\,

So, to begin,

s=(p_1+p_2)^2=p_1^2 + p_2^2 + 2p_1 \cdot p_2 \,
t=(p_1-p_3)^2=p_1^2 + p_3^2 - 2p_1 \cdot p_3 \,
u=(p_1-p_4)^2=p_1^2 + p_4^2 - 2p_1 \cdot p_4 \,

First, use (1) to re-write these,

s=m_1^2 + m_2^2 + 2p_1 \cdot p_2 \,
t=m_1^2 + m_3^2 - 2p_1 \cdot p_3 \,
u=m_1^2 + m_4^2 - 2p_1 \cdot p_4 \,

Then add them

s+t+u \, =3m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2p_1 \cdot p_2 - 2p_1 \cdot p_3 - 2p_1 \cdot p_4 \,
=m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2 \left( m_1^2 + p_1 \cdot p_2 - p_1 \cdot p_3 - p_1 \cdot p_4 \right) \,
=m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2 \left( m_1^2 + p_1 \cdot \left( p_2 - p_3 - p_4 \right) \right) \,

Then use eq (2) to simplify further,

s+t+u \, =m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2 \left( m_1^2 - p_1 \cdot p_1 \right) \,
=m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2 \left( m_1^2 - m_1^2 \right) \,

So finally,

s+t+u = m_1^2 + m_2^2 + m_3^2 + m_4^2 \,

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Mandelstam — or Mandelshtam (Russian: Мандельштам) is a Russian[dubious – discuss] Jewish surname which may refer to: Leonid Mandelstam (1879–1944), Russian theoretical physicist Mandel shtam (crater), lunar crater named for Leonid Mandelstam Nadezhda… …   Wikipedia

  • Variables de Mandelstam — En physique théorique, les variables de Mandelstam sont des quantités numériques qui contiennent, l énergie, la quantité de mouvement et les angles de particules lors d une collision. Elles sont des invariant de Lorentz. Les variables de… …   Wikipédia en Français

  • Variable de Mandelstam — Variables de Mandelstam En physique théorique, les variables de Mandelstam sont des quantités numériques qui contiennent, l énergie, la quantité de mouvement et les angles de particules lors d une collision. Elles sont des invariant de Lorentz.… …   Wikipédia en Français

  • Mandelstam — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Mandelstam est un patronyme d origine russe[citation nécessaire]. Liste de personnes célèbres nommées Mandelstam Ossip Mandelstam (1891–1938), poète russe …   Wikipédia en Français

  • Stanley Mandelstam — (b. 1928, Johannesburg) is a South African born theoretical physicist. He introduced the relativistically invariant Mandelstam variables into particle physics in 1958 as a convenient coordinate system for formulating his double dispersion… …   Wikipedia

  • Momentum transfer — Part of Chemical engineering History Concepts Unit operations Unit processes Chemical engineer Chemical process Process integration Unit operation …   Wikipedia

  • Action (physics) — In physics, the action is a particular quantity in a physical system that can be used to describe its operation. Action is an alternative to differential equations. The action is not necessarily the same for different types of systems.The action… …   Wikipedia

  • Dictature stalinienne — Histoire de l URSS sous Staline L’URSS sous Staline (1927–1953) fut un État généralement considéré comme totalitaire, modelé par un dirigeant qui disposa du pouvoir absolu et se fit entourer d un intense culte de la personnalité. L’avènement… …   Wikipédia en Français

  • Histoire de l'URSS sous Staline — L’URSS sous Staline est un État souvent qualifié de « totalitaire »[1], modelé par un dirigeant qui disposa de la totalité des pouvoirs et se fit entourer d un intense culte de la personnalité. L’avènement de Joseph Staline, le… …   Wikipédia en Français

  • Régime stalinien — Histoire de l URSS sous Staline L’URSS sous Staline (1927–1953) fut un État généralement considéré comme totalitaire, modelé par un dirigeant qui disposa du pouvoir absolu et se fit entourer d un intense culte de la personnalité. L’avènement… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”