Calderón-Zygmund lemma

Calderón-Zygmund lemma

In mathematics, the Calderón-Zygmund lemma is a fundamental result in Fourier analysis, harmonic analysis, and singular integrals. It is named for the mathematicians Alberto Calderón and Antoni Zygmund.

Given an integrable function f: mathbf{R}^{d} o mathbf{C}, where mathbf{R}^d denotes Euclidean space and mathbf{C} denotes the complex numbers, the lemma gives a precise way of partitioning mathbf{R}^d into two sets: one where "f" is essentially small; the other a countable collection of cubes where "f" is essentially large, but where some control of the function is retained.

This leads to the associated Calderón-Zygmund decomposition of "f", wherein "f" is written as the sum of "good" and "bad" functions, using the above sets.

Calderón-Zygmund lemma

Covering lemma

Let f: mathbf{R}^{d} o mathbf{C} be integrable and α be a positive constant. Then there exist sets "F" and Omega such that:

: 1) mathbf{R}^d = F cup Omega with Fcap Omega = varnothing;

: 2) |f(x)| leq alpha almost everywhere in "F";

: 3) Omega is a union of cubes, Omega = cup_k Q_k, whose interiors are mutually disjoint, and so that for each Q_k,

::alpha < frac{1}{m(Q_k)} int_{Q_k} f(x), dx leq 2^d alpha.

Calderón-Zygmund decomposition

Given "f" as above, we may write "f" as the sum of a "good" function "g" and a "bad" function "b", f = g + b. To do this, we define

::g(x) = left{egin{array}{cc}f(x), & x in F, \frac{1}{m(Q_j)}int_{Q_j}f(x),dx, & x in Q_j^o,end{array} ight.

where Q_j^o denotes the interior of Q_j, and let b = f - g. Consequently we have that

::b(x) = 0, xin F

:: int_{Q_j} b(x), dx = 0 for each cube Q_j.

The function "b" is thus supported on a collection of cubes where "f" is allowed to be "large", but has the beneficial property that its average value is zero on each of these cubes. Meanwhile |g(x)| leq alpha for almost every "x" in "F", and on each cube in Omega, "g" is equal to the average value of "f" over that cube, which by the covering chosen is not more than 2^d alpha.

References

* cite book
last = Stein | first = Elias | authorlink = Elias Stein
chapter = Chapters I-II
title = Singular Integrals and Differentiability Properties of Functions
publisher = Princeton University Press | year = 1970


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Lemma von Calderón-Zygmund — Das Lemma von Calderón Zygmund ist ein wichtiges mathematisches Resultat aus dem Bereich der Fourieranalyse beziehungsweise der harmonischen Analysis. Es wurde nach den Mathematikern Alberto Calderón and Antoni Zygmund benannt. Das Lemma zeigt… …   Deutsch Wikipedia

  • Lemme de Calderón-Zygmund — En mathématiques, le lemme de Calderón–Zygmund est un résultat fondamental en théorie de Fourier, analyse harmonique, et théorie des intégrales singulières (en). Il porte le nom des mathématiciens Alberto Calderón et Antoni Zygmund. Pour une …   Wikipédia en Français

  • Zygmund — ist der Familienname folgender Personen: Antoni Zygmund (1900–1992), US amerikanischer Mathematiker Zygmund ist der Vorname folgender Personen: Zygmund Przemyslaw Rondomanski (1908–2000), US amerikanischer Komponist und Cellist Siehe auch: Lemma… …   Deutsch Wikipedia

  • Calderón — ist der Familienname folgender Personen: Abdón Calderón (1804–1822), ecuadorianischer Freiheitsheld Alberto Calderón (1920–1998), argentinischer Mathematiker Armando Calderón Sol (* 1949), Staatspräsident von El Salvador 1994 bis 1999 Bernardo… …   Deutsch Wikipedia

  • Rising sun lemma — In mathematical analysis, the rising sun lemma is a lemma due to Frigyes Riesz, used in the proof of the Hardy Littlewood maximal theorem. The lemma quickly gives a proof of the one dimensional Calderón Zygmund lemma, a fundamental result in… …   Wikipedia

  • Alberto Calderón — Alberto Pedro Calderón (* 14. September 1920 in Mendoza in Argentinien; † 16. April 1998 in Chicago) war ein argentinischer Mathematiker, der sich mit Analysis beschäftigte. Er ist bekannt für seine Theorie singulärer Integralgleichungen.… …   Deutsch Wikipedia

  • Whitney covering lemma — In mathematical analysis, the Whitney covering lemma is a lemma which asserts the existence of a certain type of partition of an open set in a Euclidean space. Originally it was employed in the proof of Hassler Whitney s extension theorem. The… …   Wikipedia

  • Multiplier (Fourier analysis) — In Fourier analysis, a multiplier operator is a type of linear operator, or transformation of functions. These operators act on a function by altering its Fourier transform. Specifically they multiply the Fourier transform of a function by a… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Dyadic cubes — In mathematics, the dyadic cubes are a collection of cubes in ℝn of different sizes or scales such that the set of cubes of each scale partition ℝn and each cube in one scale may be written as a union of cubes of a smaller scale. These are… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”