Shapley-Shubik power index

Shapley-Shubik power index

The Shapley-Shubik power index was formulated by Lloyd Shapley and Martin Shubik in 1954 [Shapley, L.S. and M. Shubik, A Method for Evaluating the Distribution of Power in a Committee System, "American Political Science Review", 48, 787-792, 1954.] to measure the powers of players in a voting game. The index often reveals surprising power distribution that is not obvious on the surface.

The constituents of a voting system, such as legislative bodies, executives, shareholders, individual legislators, and so forth, can be viewed as players in an n-player game. Players with the same preferences form coalitions. Any coalition that has enough votes to pass a bill or elect a candidate is called winning, and the others are called losing. Based on Shapley value, Shapley and Shubik concluded that the power of a coalition was not simply proportional to its size.

The power of a coalition (or a player) is measured by the fraction of the possible voting sequences in which that coalition casts the deciding vote, that is, the vote that first guarantees passage or failure. [Hu, X., An asymmetric Shaplay-Shubik power index, "International Journal of Game Theory," 34, 229-240, 2006.]

The power index is normalized between 0 and 1. A power of 0 means that a coalition has no effect at all on the outcome of the game; and a power of 1 means a coalition determines the outcome by its vote. Also the sum of the powers of all the players is always equal to 1.

Examples

Suppose decisions are made by majority rule in a body consisting of A, B, C, D, who have 3, 2, 1 and 1 votes, respectively. The majority vote threshold is 4. There are 24 possible orders for these members to vote:

For each voting sequence the pivot voter -- that voter who first raises the cumulative sum to 4 or more -- is bolded. Here, A is pivotal in 12 of the 24 sequences. Therefore, A has an index of power 1/2. The others have an index of power 1/6. Curiously, B has no more power than C and D. When you consider that A's vote determines the outcome unless the others unite against A, it becomes clear that B, C, D play identical roles. This reflects in the power indices.

Suppose that in another majority-rule voting body with 2n+1 members, in which a single strong member has k votes and the remaining (2n-k+1) members have one vote each. It then turns out that the power of the strong member is k/(2n+2-k). As k increases, his power increases disproportionately until it approaches half the total vote and he gains virtually all the power. This phenomenon often happens to large shareholders and business takeovers.

References

ee also

* Shapley value
* Arrow theorem
* Banzhaf power index


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Banzhaf power index — The Banzhaf power index, named after John F. Banzhaf III (though originally invented by harvtxt|Penrose|1946 and sometimes calledPenrose Banzhaf index),is a power index defined by the probability of changing an outcome of a vote where voting… …   Wikipedia

  • Shapley-Shubik-Index — Ein Machtindex ist ein Instrument zur Messung von Macht. Die bekanntesten Machtindizes, die im Folgenden dargestellt werden, messen eine ganz besondere Form von Macht: die sogenannte „Abstimmungsmacht“ (voting power). Damit ist das… …   Deutsch Wikipedia

  • Indice de pouvoir de Shapley-Shubik — L’indice de pouvoir de Shapley Shubik a été formulé par Lloyd Shapley et Martin Shubik en 1954[1] pour mesurer le pouvoirs de joueurs dans un jeu de vote. L indice révèle souvent une distribution surprenante du pouvoir qui n est pas évidente au… …   Wikipédia en Français

  • Shapley value — In game theory, a Shapley value, named in honour of Lloyd Shapley, who introduced it in 1953, describes one approach to the fair allocation of gains obtained by cooperation among several actors.The setup is as follows: a coalition of actors… …   Wikipedia

  • Lloyd Shapley — Infobox Scientist name = Lloyd S. Shapley |300px image width = caption = Lloyd S. Shapley in 2002, Los Angeles birth date = Birth date and age|1923|6|2|mf=y birth place = Cambridge, Massachusetts death date = death place = residence = nationality …   Wikipedia

  • Martin Shubik — (born March 24, 1926) is an American economist, who is Professor Emeritus of Mathematical Institutional Economics at Yale University. He was educated at the University of Toronto and Princeton University. On the Yale faculty since 1963, Shubik… …   Wikipedia

  • Lloyd Shapley — Lloyd Stowell Shapley Lloyd Stowell Shapley (* 2. Juni 1923 in Cambridge) ist ein US amerikanischer Wirtschaftswissenschaftler und Mathematiker. Er ist emeritierter Professor an der University of California. Se …   Deutsch Wikipedia

  • Lloyd Stowell Shapley — (* 2. Juni 1923 in Cambridge) ist ein US amerikanischer Wirtschaftswissenschaftler und Mathematiker. Er ist emeritierter Professor an der University of California. Se …   Deutsch Wikipedia

  • Lloyd S. Shapley — Lloyd Stowell Shapley Lloyd Stowell Shapley (* 2. Juni 1923 in Cambridge, Massachusetts) ist ein US amerikanischer Wirtschaftswissenschaftler und Mathematiker. Er ist emeritierter Professor an der University of California, Los Angeles …   Deutsch Wikipedia

  • Banzhaf-Index — Ein Machtindex ist ein Instrument zur Messung von Macht. Die bekanntesten Machtindizes, die im Folgenden dargestellt werden, messen eine ganz besondere Form von Macht: die sogenannte „Abstimmungsmacht“ (voting power). Damit ist das… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”